ﻻ يوجد ملخص باللغة العربية
Structure learning offers an expressive, versatile and explainable approach to causal and mechanistic modeling of complex biological data. We present wiseR, an open source application for learning, evaluating and deploying robust causal graphical models using graph neural networks and Bayesian networks. We demonstrate the utility of this application through application on for biomarker discovery in a COVID-19 clinical dataset.
We propose a novel end-to-end neural network architecture that, once trained, directly outputs a probabilistic clustering of a batch of input examples in one pass. It estimates a distribution over the number of clusters $k$, and for each $1 leq k leq
The annotation of domain experts is important for some medical applications where the objective groundtruth is ambiguous to define, e.g., the rehabilitation for some chronic diseases, and the prescreening of some musculoskeletal abnormalities without
Learning continually from non-stationary data streams is a long-standing goal and a challenging problem in machine learning. Recently, we have witnessed a renewed and fast-growing interest in continual learning, especially within the deep learning co
Point of interest (POI) data serves as a valuable source of semantic information for places of interest and has many geospatial applications in real estate, transportation, and urban planning. With the availability of different data sources, POI conf
We propose a novel deep learning method for local self-supervised representation learning that does not require labels nor end-to-end backpropagation but exploits the natural order in data instead. Inspired by the observation that biological neural n