ﻻ يوجد ملخص باللغة العربية
Point of interest (POI) data serves as a valuable source of semantic information for places of interest and has many geospatial applications in real estate, transportation, and urban planning. With the availability of different data sources, POI conflation serves as a valuable technique for enriching data quality and coverage by merging the POI data from multiple sources. This study proposes a novel end-to-end POI conflation framework consisting of six steps, starting with data procurement, schema standardisation, taxonomy mapping, POI matching, POI unification, and data verification. The feasibility of the proposed framework was demonstrated in a case study conducted in the eastern region of Singapore, where the POI data from five data sources was conflated to form a unified POI dataset. Based on the evaluation conducted, the resulting unified dataset was found to be more comprehensive and complete than any of the five POI data sources alone. Furthermore, the proposed approach for identifying POI matches between different data sources outperformed all baseline approaches with a matching accuracy of 97.6% with an average run time below 3 minutes when matching over 12,000 POIs to result in 8,699 unique POIs, thereby demonstrating the frameworks scalability for large scale implementation in dense urban contexts.
In this paper, we propose a Deep Reinforcement Learning (RL) framework for task arrangement, which is a critical problem for the success of crowdsourcing platforms. Previous works conduct the personalized recommendation of tasks to workers via superv
PyODDS is an end-to end Python system for outlier detection with database support. PyODDS provides outlier detection algorithms which meet the demands for users in different fields, w/wo data science or machine learning background. PyODDS gives the a
Predicting molecular conformations (or 3D structures) from molecular graphs is a fundamental problem in many applications. Most existing approaches are usually divided into two steps by first predicting the distances between atoms and then generating
The annotation of domain experts is important for some medical applications where the objective groundtruth is ambiguous to define, e.g., the rehabilitation for some chronic diseases, and the prescreening of some musculoskeletal abnormalities without
We propose a novel deep learning method for local self-supervised representation learning that does not require labels nor end-to-end backpropagation but exploits the natural order in data instead. Inspired by the observation that biological neural n