ﻻ يوجد ملخص باللغة العربية
Neural networks (NNs) are widely used for classification tasks for their remarkable performance. However, the robustness and accuracy of NNs heavily depend on the training data. In many applications, massive training data is usually not available. To address the challenge, this paper proposes an iterative adversarial data augmentation (IADA) framework to learn neural network models from an insufficient amount of training data. The method uses formal verification to identify the most confusing input samples, and leverages human guidance to safely and iteratively augment the training data with these samples. The proposed framework is applied to an artificial 2D dataset, the MNIST dataset, and a human motion dataset. By applying IADA to fully-connected NN classifiers, we show that our training method can improve the robustness and accuracy of the learned model. By comparing to regular supervised training, on the MNIST dataset, the average perturbation bound improved 107.4%. The classification accuracy improved 1.77%, 3.76%, 10.85% on the 2D dataset, the MNIST dataset, and the human motion dataset respectively.
Forecasting influenza like illnesses (ILI) has rapidly progressed in recent years from an art to a science with a plethora of data-driven methods. While these methods have achieved qualified success, their applicability is limited due to their inabil
In this paper, we study Reinforcement Learning from Demonstrations (RLfD) that improves the exploration efficiency of Reinforcement Learning (RL) by providing expert demonstrations. Most of existing RLfD methods require demonstrations to be perfect a
Adversarial examples have become one of the largest challenges that machine learning models, especially neural network classifiers, face. These adversarial examples break the assumption of attack-free scenario and fool state-of-the-art (SOTA) classif
Uncertainty estimates help to identify ambiguous, novel, or anomalous inputs, but the reliable quantification of uncertainty has proven to be challenging for modern deep networks. In order to improve uncertainty estimation, we propose On-Manifold Adv
As one of the most popular classifiers, linear SVMs still have challenges in dealing with very large-scale problems, even though linear or sub-linear algorithms have been developed recently on single machines. Parallel computing methods have been dev