ﻻ يوجد ملخص باللغة العربية
Forecasting influenza like illnesses (ILI) has rapidly progressed in recent years from an art to a science with a plethora of data-driven methods. While these methods have achieved qualified success, their applicability is limited due to their inability to incorporate expert feedback and guidance systematically into the forecasting framework. We propose a new approach leveraging the Seldonian optimization framework from AI safety and demonstrate how it can be adapted to epidemic forecasting. We study two types of guidance: smoothness and regional consistency of errors, where we show that by its successful incorporation, we are able to not only bound the probability of undesirable behavior to happen, but also to reduce RMSE on test data by up to 17%.
In this paper, we study Reinforcement Learning from Demonstrations (RLfD) that improves the exploration efficiency of Reinforcement Learning (RL) by providing expert demonstrations. Most of existing RLfD methods require demonstrations to be perfect a
Neural networks (NNs) are widely used for classification tasks for their remarkable performance. However, the robustness and accuracy of NNs heavily depend on the training data. In many applications, massive training data is usually not available. To
Reasoning about the future behavior of other agents is critical to safe robot navigation. The multiplicity of plausible futures is further amplified by the uncertainty inherent to agent state estimation from data, including positions, velocities, and
Accurate traffic state prediction is the foundation of transportation control and guidance. It is very challenging due to the complex spatiotemporal dependencies in traffic data. Existing works cannot perform well for multi-step traffic prediction th
The basic reproductive number -- $R_0$ -- is one of the most common and most commonly misapplied numbers in public health. Although often used to compare outbreaks and forecast pandemic risk, this single number belies the complexity that two differen