ترغب بنشر مسار تعليمي؟ اضغط هنا

Classification of solutions of the 2D steady Navier-Stokes equations with separated variables in cone-like domains

134   0   0.0 ( 0 )
 نشر من قبل Jie Wu
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the problem of classification of solutions for the steady Navier-Stokes equations in any cone-like domains. In the form of separated variables, $$u(x,y)=left( begin{array}{c} varphi_1(r)v_1(theta) varphi_2(r)v_2(theta) end{array} right) ,$$ where $x=rcostheta$ and $y=rsintheta$ in polar coordinates, we obtain the expressions of all smooth solutions with $C^0$ Dirichlet boundary condition. In particular, it shows that (i) some solutions are found, which are H{o}lder continuous on the boundary, but their gradients blow up at the corner; (ii) all solutions in the entire plane of $mathbb{R}^2$ like harmonic functions or Stokes equations, are polynomial expressions.

قيم البحث

اقرأ أيضاً

In this paper, we investigate the nonhomogeneous boundary value problem for the steady Navier-Stokes equations in a helically symmetric spatial domain. When data is assumed to be helical invariant and satisfies the compatibility condition, we prove t his problem has at least one helical invariant solution.
77 - Shangkun Weng 2015
We investigate the decay properties of smooth axially symmetric D-solutions to the steady Navier-Stokes equations. The achievements of this paper are two folds. One is improved decay rates of $u_{th}$ and $ a {bf u}$, especially we show that $|u_{th} (r,z)|leq cleft(f{log r}{r}right)^{f 12}$ for any smooth axially symmetric D-solutions to the Navier-Stokes equations. These improvement are based on improved weighted estimates of $om_{th}$, integral representations of ${bf u}$ in terms of $bm{om}=textit{curl }{bf u}$ and $A_p$ weight for singular integral operators, which yields good decay estimates for $( a u_r, a u_z)$ and $(om_r, om_{z})$, where $bm{om}= om_r {bf e}_r + om_{th} {bf e}_{th}+ om_z {bf e}_z$. Another is the first decay rate estimates in the $Oz$-direction for smooth axially symmetric flows without swirl. We do not need any small assumptions on the forcing term.
100 - Antonio Russo 2011
We prove that the steady--state Navier--Stokes problem in a plane Lipschitz domain $Omega$ exterior to a bounded and simply connected set has a $D$-solution provided the boundary datum $a in L^2(partialOmega)$ satisfies ${1over 2pi}|int_{partialOmega }acdot |<1$. If $Omega$ is of class $C^{1,1}$, we can assume $ain W^{-1/4,4}(partialOmega)$. Moreover, we show that for every $D$--solution $(u,p)$ of the Navier--Stokes equations it holds $ abla p = o(r^{-1}), abla_k p = O(r^{epsilon-3/2}), abla_ku = O(r^{epsilon-3/4})$, for all $kin{Bbb N}setminus{1}$ and for all positive $epsilon$, and if the flux of $u$ through a circumference surrounding $complementOmega$ is zero, then there is a constant vector $u_0$ such that $u=u_0+o(1)$.
We construct forward self-similar solutions (expanders) for the compressible Navier-Stokes equations. Some of these self-similar solutions are smooth, while others exhibit a singularity do to cavitation at the origin.
A hyperbolic relaxation of the classical Navier-Stokes problem in 2D bounded domain with Dirichlet boundary conditions is considered. It is proved that this relaxed problem possesses a global strong solution if the relaxation parameter is small and t he appropriate norm of the initial data is not very large. Moreover, the dissipativity of such solutions is established and the singular limit as the relaxation parameter tends to zero is studied
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا