ﻻ يوجد ملخص باللغة العربية
We investigate the decay properties of smooth axially symmetric D-solutions to the steady Navier-Stokes equations. The achievements of this paper are two folds. One is improved decay rates of $u_{th}$ and $ a {bf u}$, especially we show that $|u_{th}(r,z)|leq cleft(f{log r}{r}right)^{f 12}$ for any smooth axially symmetric D-solutions to the Navier-Stokes equations. These improvement are based on improved weighted estimates of $om_{th}$, integral representations of ${bf u}$ in terms of $bm{om}=textit{curl }{bf u}$ and $A_p$ weight for singular integral operators, which yields good decay estimates for $( a u_r, a u_z)$ and $(om_r, om_{z})$, where $bm{om}= om_r {bf e}_r + om_{th} {bf e}_{th}+ om_z {bf e}_z$. Another is the first decay rate estimates in the $Oz$-direction for smooth axially symmetric flows without swirl. We do not need any small assumptions on the forcing term.
An old problem asks whether bounded mild ancient solutions of the 3 dimensional Navier-Stokes equations are constants. While the full 3 dimensional problem seems out of reach, in the works cite{KNSS, SS09}, the authors expressed their belief that the
In this paper we study Liouville properties of smooth steady axially symmetric solutions of the Navier-Stokes equations. First, we provide another version of the Liouville theorem of cite{kpr15} in the case of zero swirl, where we replaced the Dirich
In this paper, we investigate the decay properties of an axisymmetric D-solutions to stationary incompressible Navier-Stokes systems in $mathbb{R}^3$. We obtain the optimal decay rate $|{bf u}(x)|leq frac{C}{|x|+1}$ for axisymmetric flows without swi
In this paper, we investigate the nonhomogeneous boundary value problem for the steady Navier-Stokes equations in a helically symmetric spatial domain. When data is assumed to be helical invariant and satisfies the compatibility condition, we prove t
For incompressible Navier-Stokes equations, Necas-Ruzicka-Sverak proved that self-similar solution has to be zero in 1996. Further, Yang-Yang-Wu find symmetry property plays an important role in the study of ill-posedness. In this paper, we consider