ترغب بنشر مسار تعليمي؟ اضغط هنا

On the existence of D-solutions of the steady-state Navier-Stokes equations in plane exterior domains

180   0   0.0 ( 0 )
 نشر من قبل Antonio Russo
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Antonio Russo




اسأل ChatGPT حول البحث

We prove that the steady--state Navier--Stokes problem in a plane Lipschitz domain $Omega$ exterior to a bounded and simply connected set has a $D$-solution provided the boundary datum $a in L^2(partialOmega)$ satisfies ${1over 2pi}|int_{partialOmega}acdot |<1$. If $Omega$ is of class $C^{1,1}$, we can assume $ain W^{-1/4,4}(partialOmega)$. Moreover, we show that for every $D$--solution $(u,p)$ of the Navier--Stokes equations it holds $ abla p = o(r^{-1}), abla_k p = O(r^{epsilon-3/2}), abla_ku = O(r^{epsilon-3/4})$, for all $kin{Bbb N}setminus{1}$ and for all positive $epsilon$, and if the flux of $u$ through a circumference surrounding $complementOmega$ is zero, then there is a constant vector $u_0$ such that $u=u_0+o(1)$.



قيم البحث

اقرأ أيضاً

In this paper, we investigate the nonhomogeneous boundary value problem for the steady Navier-Stokes equations in a helically symmetric spatial domain. When data is assumed to be helical invariant and satisfies the compatibility condition, we prove t his problem has at least one helical invariant solution.
133 - R. M. Kiehn 2007
The concept of continuous topological evolution, based upon Cartans methods of exterior differential systems, is used to develop a topological theory of non-equilibrium thermodynamics, within which there exist processes that exhibit continuous topolo gical change and thermodynamic irreversibility. The technique furnishes a universal, topological foundation for the partial differential equations of hydrodynamics and electrodynamics; the technique does not depend upon a metric, connection or a variational principle. Certain topological classes of solutions to the Navier-Stokes equations are shown to be equivalent to thermodynamically irreversible processes.
The representation of the conformal group (PSU(2,2)) on the space of solutions to Maxwells equations on the conformal compactification of Minkowski space is shown to break up into four irreducible unitarizable smooth Frechet representations of modera te growth. An explicit inner product is defined on each representation. The frequency spectrum of each of these representations is analyzed. These representations have notable properties; in particular they have positive or negative energy, they are of type $A_{frak q}(lambda)$ and are quaternionic. Physical implications of the results are explained.
77 - Shangkun Weng 2015
We investigate the decay properties of smooth axially symmetric D-solutions to the steady Navier-Stokes equations. The achievements of this paper are two folds. One is improved decay rates of $u_{th}$ and $ a {bf u}$, especially we show that $|u_{th} (r,z)|leq cleft(f{log r}{r}right)^{f 12}$ for any smooth axially symmetric D-solutions to the Navier-Stokes equations. These improvement are based on improved weighted estimates of $om_{th}$, integral representations of ${bf u}$ in terms of $bm{om}=textit{curl }{bf u}$ and $A_p$ weight for singular integral operators, which yields good decay estimates for $( a u_r, a u_z)$ and $(om_r, om_{z})$, where $bm{om}= om_r {bf e}_r + om_{th} {bf e}_{th}+ om_z {bf e}_z$. Another is the first decay rate estimates in the $Oz$-direction for smooth axially symmetric flows without swirl. We do not need any small assumptions on the forcing term.
133 - Wendong Wang , Jie Wu 2021
We investigate the problem of classification of solutions for the steady Navier-Stokes equations in any cone-like domains. In the form of separated variables, $$u(x,y)=left( begin{array}{c} varphi_1(r)v_1(theta) varphi_2(r)v_2(theta) end{arra y} right) ,$$ where $x=rcostheta$ and $y=rsintheta$ in polar coordinates, we obtain the expressions of all smooth solutions with $C^0$ Dirichlet boundary condition. In particular, it shows that (i) some solutions are found, which are H{o}lder continuous on the boundary, but their gradients blow up at the corner; (ii) all solutions in the entire plane of $mathbb{R}^2$ like harmonic functions or Stokes equations, are polynomial expressions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا