ﻻ يوجد ملخص باللغة العربية
Few-shot text classification is a fundamental NLP task in which a model aims to classify text into a large number of categories, given only a few training examples per category. This paper explores data augmentation -- a technique particularly suitable for training with limited data -- for this few-shot, highly-multiclass text classification setting. On four diverse text classification tasks, we find that common data augmentation techniques can improve the performance of triplet networks by up to 3.0% on average. To further boost performance, we present a simple training strategy called curriculum data augmentation, which leverages curriculum learning by first training on only original examples and then introducing augmented data as training progresses. We explore a two-stage and a gradual schedule, and find that, compared with standard single-stage training, curriculum data augmentation trains faster, improves performance, and remains robust to high amounts of noising from augmentation.
Text classification tends to struggle when data is deficient or when it needs to adapt to unseen classes. In such challenging scenarios, recent studies have used meta-learning to simulate the few-shot task, in which new queries are compared to a smal
This paper proposes Dynamic Memory Induction Networks (DMIN) for few-shot text classification. The model utilizes dynamic routing to provide more flexibility to memory-based few-shot learning in order to better adapt the support sets, which is a crit
Most previous methods for text data augmentation are limited to simple tasks and weak baselines. We explore data augmentation on hard tasks (i.e., few-shot natural language understanding) and strong baselines (i.e., pretrained models with over one bi
Meta-learning has emerged as a trending technique to tackle few-shot text classification and achieved state-of-the-art performance. However, existing solutions heavily rely on the exploitation of lexical features and their distributional signatures o
We introduce EfficientCL, a memory-efficient continual pretraining method that applies contrastive learning with novel data augmentation and curriculum learning. For data augmentation, we stack two types of operation sequentially: cutoff and PCA jitt