ﻻ يوجد ملخص باللغة العربية
With the rapid development of advanced electromagnetic manipulation technologies, researchers and engineers are starting to study smart surfaces that can achieve enhanced coverages, high reconfigurability, and are easy to deploy. Among these efforts, simultaneously transmitting and reflecting intelligent omni-surface (STAR-IOS) is one of the most promising categories. Although pioneering works have demonstrated the benefits of STAR-IOSs in terms of its wireless communication performance gain, several important issues remain unclear including practical hardware implementations and physics-compliant models for STAR-IOSs. In this paper, we answer these pressing questions of STAR-IOSs by discussing four practical hardware implementations of STAR-IOSs, as well as three hardware modelling methods and five channel modelling methods. These discussions not only categorize existing smart surface technologies but also serve as a physicscompliant pipeline for further investigating the STAR-IOSs.
In this letter, simultaneous transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) are studied. Compared with the conventional reflecting-only RISs, the coverage of STAR-RISs is extended to 360 degrees via simultaneous transmiss
The novel concept of simultaneously transmitting and reflecting (STAR) reconfigurable intelligent surfaces (RISs) is investigated, where the incident wireless signal is divided into transmitted and reflected signals passing into both sides of the spa
An intelligent reflecting surface (IRS) at terahertz (THz) bands is expected to have a massive number of reflecting elements to compensate for the severe propagation losses. However, as the IRS size grows, the conventional far-field assumption starts
Different from traditional reflection-only reconfigurable intelligent surfaces (RISs), simultaneously transmitting and reflecting RISs (STAR-RISs) represent a novel technology, which extends the textit{half-space} coverage to textit{full-space} cover
In this paper, unmanned aerial vehicles (UAVs) and intelligent reflective surface (IRS) are utilized to support terahertz (THz) communications. To this end, the joint optimization of UAVs trajectory, the phase shift of IRS, the allocation of THz su