ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint Design for Simultaneously Transmitting And Reflecting (STAR) RIS Assisted NOMA Systems

129   0   0.0 ( 0 )
 نشر من قبل Jiakuo Zuo
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Different from traditional reflection-only reconfigurable intelligent surfaces (RISs), simultaneously transmitting and reflecting RISs (STAR-RISs) represent a novel technology, which extends the textit{half-space} coverage to textit{full-space} coverage by simultaneously transmitting and reflecting incident signals. STAR-RISs provide new degrees-of-freedom (DoF) for manipulating signal propagation. Motivated by the above, a novel STAR-RIS assisted non-orthogonal multiple access (NOMA) (STAR-RIS-NOMA) system is proposed in this paper. Our objective is to maximize the achievable sum rate by jointly optimizing the decoding order, power allocation coefficients, active beamforming, and transmission and reflection beamforming. However, the formulated problem is non-convex with intricately coupled variables. To tackle this challenge, a suboptimal two-layer iterative algorithm is proposed. Specifically, in the inner-layer iteration, for a given decoding order, the power allocation coefficients, active beamforming, transmission and reflection beamforming are optimized alternatingly. For the outer-layer iteration, the decoding order of NOMA users in each cluster is updated with the solutions obtained from the inner-layer iteration. Moreover, an efficient decoding order determination scheme is proposed based on the equivalent-combined channel gains. Simulation results are provided to demonstrate that the proposed STAR-RSI-NOMA system, aided by our proposed algorithm, outperforms conventional RIS-NOMA and RIS assisted orthogonal multiple access (RIS-OMA) systems.


قيم البحث

اقرأ أيضاً

142 - Xidong Mu , Yuanwei Liu , Li Guo 2021
The novel concept of simultaneously transmitting and reflecting (STAR) reconfigurable intelligent surfaces (RISs) is investigated, where the incident wireless signal is divided into transmitted and reflected signals passing into both sides of the spa ce surrounding the surface, thus facilitating a full-space manipulation of signal propagation. Based on the introduced basic signal model of `STAR, three practical operating protocols for STAR-RISs are proposed, namely energy splitting (ES), mode switching (MS), and time switching (TS). Moreover, a STAR-RIS aided downlink communication system is considered for both unicast and multicast transmission, where a multi-antenna base station (BS) sends information to two users, i.e., one on each side of the STAR-RIS. A power consumption minimization problem for the joint optimization of the active beamforming at the BS and the passive transmission and reflection beamforming at the STAR-RIS is formulated for each of the proposed operating protocols, subject to communication rate constraints of the users. For ES, the resulting highly-coupled non-convex optimization problem is solved by an iterative algorithm, which exploits the penalty method and successive convex approximation. Then, the proposed penalty-based iterative algorithm is extended to solve the mixed-integer non-convex optimization problem for MS. For TS, the optimization problem is decomposed into two subproblems, which can be consecutively solved using state-of-the-art algorithms and convex optimization techniques. Finally, our numerical results reveal that: 1) the TS and ES operating protocols are generally preferable for unicast and multicast transmission, respectively; and 2) the required power consumption for both scenarios is significantly reduced by employing the proposed STAR-RIS instead of conventional reflecting/transmiting-only RISs.
Bistatic backscatter communication (BackCom) allows passive tags to transmit over extended ranges, but at the cost of having carrier emitters either transmitting at high powers or being deployed very close to tags. In this paper, we examine how the p resence of an intelligent reflecting surface (IRS) could benefit the bistatic BackCom system. We study the transmit power minimization problem at the carrier emitter, where its transmit beamforming vector is jointly optimized with the IRS phase shifts, whilst guaranteeing a required BackCom performance. A unique feature in this system setup is the multiple IRS reflections experienced by signals traveling from the carrier emitter to the reader, which renders the optimization problem highly nonconvex. Therefore, we propose algorithms based on the minorization-maximization and alternating optimization techniques to obtain approximate solutions for the joint design. We also propose low-complexity algorithms based on successive optimization of individual phase shifts. Our results reveal considerable transmit power savings in both single-tag and multi-tag systems, even with moderate IRS sizes, which may be translated to significant range improvements using the original transmit power or reduce the reliance of tags on carrier emitters located at close range.
134 - Yuanwei Liu , Xidong Mu , Xiao Liu 2020
This article focuses on the exploitation of reconfigurable intelligent surfaces (RISs) in multi-user networks employing orthogonal multiple access (OMA) or non-orthogonal multiple access (NOMA), with an emphasis on investigating the interplay between NOMA and RIS. Depending on whether the RIS reflection coefficients can be adjusted only once or multiple times during one transmission, we distinguish between static and dynamic RIS configurations. In particular, the capacity region of RIS aided single-antenna NOMA networks is characterized and compared with the OMA rate region from an information-theoretic perspective, revealing that the dynamic RIS configuration is capacity-achieving. Then, the impact of the RIS deployment location on the performance of different multiple access schemes is investigated, which reveals that asymmetric and symmetric deployment strategies are preferable for NOMA and OMA, respectively. Furthermore, for RIS aided multiple-antenna NOMA networks, three novel joint active and passive beamformer designs are proposed based on both beamformer based and cluster based strategies. Finally, open research problems for RIS-NOMA networks are highlighted.
310 - Yuwei Huang , Xiaopeng Mo , Jie Xu 2019
This paper considers an unmanned aerial vehicle enabled-up link non-orthogonal multiple-access system, where multiple mobile users on the ground send independent messages to a unmanned aerial vehicle in the sky via non-orthogonal multiple-access tran smission. Our objective is to design the unmanned aerial vehicle dynamic maneuver for maximizing the sum-rate throughput of all mobile ground users over a finite time horizon.
109 - Xidong Mu , Yuanwei Liu , Li Guo 2021
Intelligent reflecting surface (IRS) enhanced multi-unmanned aerial vehicle (UAV) non-orthogonal multiple access (NOMA) networks are investigated. A new transmission framework is proposed, where multiple UAV-mounted base stations employ NOMA to serve multiple groups of ground users with the aid of an IRS. The three-dimensional (3D) placement and transmit power of UAVs, the reflection matrix of the IRS, and the NOMA decoding orders among users are jointly optimized for maximization of the sum rate of considered networks. To tackle the formulated mixed-integer non-convex optimization problem with coupled variables, a block coordinate descent (BCD)-based iterative algorithm is developed. Specifically, the original problem is decomposed into three subproblems, which are alternatingly solved by exploiting the penalty method and the successive convex approximation technique. The proposed BCD-based algorithm is demonstrated to be able to obtain a stationary point of the original problem with polynomial time complexity. Numerical results show that: 1) the proposed NOMA-IRS scheme for multi-UAV networks achieves a higher sum rate compared to the benchmark schemes, i.e., orthogonal multiple access (OMA)-IRS and NOMA without IRS; 2) the use of IRS is capable of providing performance gain for multi-UAV networks by both enhancing channel qualities of UAVs to their served users and mitigating the inter-UAV interference; and 3) optimizing the UAV placement can make the sum rate gain brought by NOMA more distinct due to the flexible decoding order design.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا