ﻻ يوجد ملخص باللغة العربية
We demonstrate a new method to control the Fermi level around the van Hove singularity (VHS) in Li-intercalated graphene on the SiC substrate. By angle-resolved photoemission spectroscopy, we observed a clear Lifshitz transition in the vicinity of the VHS by increasing the graphene thickness. This behavior is unexpected in a free-standing Li-intercalated graphene model. The calculation including the substrate suggests that the surface state stabilizes the Fermi level around the VHS of the Dirac bands via hybridization. In addition, we found that a sizable Schottky barrier is formed between graphene and the substrate. These properties allow us to explore the electronic phase diagram around the VHS by controlling the thickness and electric field in the device condition.
A topological Dirac semimetal is a novel state of quantum matter which has recently attracted much attention as an apparent 3D version of graphene. In this paper, we report critically important results on the electronic structure of the 3D Dirac semi
Twisted graphene bilayers (TGBs) have low-energy van Hove singularities (VHSs) that are strongly localized around AA-stacked regions of the moire pattern. Therefore, they exhibit novel many-body electronic states, such as Mott-like insulator and unco
We have applied nuclear magnetic resonance spectroscopy to study the distinctive network of nodal lines in the Dirac semimetal ZrSiTe. The low-$T$ behavior is dominated by a symmetry-protected nodal line, with NMR providing a sensitive probe of the d
Electronic instabilities at the crossing of the Fermi energy with a Van Hove singularity in the density of states often lead to new phases of matter such as superconductivity, magnetism or density waves. However, in most materials this condition is d
Understanding and tuning correlated states is of great interest and significance to modern condensed matter physics. The recent discovery of unconventional superconductivity and Mott-like insulating states in magic-angle twisted bilayer graphene (tBL