ترغب بنشر مسار تعليمي؟ اضغط هنا

NMR determination of Van Hove singularity and Lifshitz transitions in nodal-line semimetal ZrSiTe

78   0   0.0 ( 0 )
 نشر من قبل Yefan Tian
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have applied nuclear magnetic resonance spectroscopy to study the distinctive network of nodal lines in the Dirac semimetal ZrSiTe. The low-$T$ behavior is dominated by a symmetry-protected nodal line, with NMR providing a sensitive probe of the diamagnetic response of the associated carriers. A sharp low-$T$ minimum in NMR shift and $(T_1T)^{-1}$ provides a quantitative measure of the dispersionless, quasi-2D behavior of this nodal line. We also identify a van Hove singularity closely connected to this nodal line, and an associated $T$-induced Lifshitz transition. A disconnect in the NMR shift and line width at this temperature indicates the change in electronic behavior associated with this topological change. These features have an orientation-dependent behavior indicating a field-dependent scaling of the associated band energies.

قيم البحث

اقرأ أيضاً

The layered material ZrSiTe is currently extensively investigated as a nodal-line semimetal with Dirac-like band crossings protected by nonsymmorphic symmetry close to the Fermi energy. A recent infrared spectroscopy study on ZrSiTe under external pr essure found anomalies in the optical response, providing hints for pressure-induced phase transitions at $approx$4.1 and $approx$6.5 GPa. By pressure-dependent Raman spectroscopy and x-ray diffraction measurements combined with electronic band structure calculations we find indications for two pressure-induced Lifshitz transitions with major changes in the Fermi surface topology in the absence of lattice symmetry changes. These electronic phase transitions can be attributed to the enhanced interlayer interaction induced by external pressure. Our findings demonstrate the crucial role of the interlayer distance for the electronic properties of layered van der Waals topological materials.
A topological Dirac semimetal is a novel state of quantum matter which has recently attracted much attention as an apparent 3D version of graphene. In this paper, we report critically important results on the electronic structure of the 3D Dirac semi metal Na3Bi at a surface that reveals its nontrivial groundstate. Our studies, for the first time, reveal that the two 3D Dirac cones go through a topological change in the constant energy contour as a function of the binding energy, featuring a Lifshitz point, which is missing in a strict 3D analog of graphene (in other words Na3Bi is not a true 3D analog of graphene). Our results identify the first example of a band saddle point singularity in 3D Dirac materials. This is in contrast to its 2D analogs such as graphene and the helical Dirac surface states of a topological insulator. The observation of multiple Dirac nodes in Na3Bi connecting via a Lifshitz point along its crystalline rotational axis away from the Kramers point serves as a decisive signature for the symmetry-protected nature of the Dirac semimetals topological groundstate.
Here we report an ultrafast optical spectroscopic study of the nodal-line semimetal ZrSiTe. Our measurements reveal that, converse to other compounds of the family, the sudden injection of electronic excitations results in a strongly coherent respons e of an $A_{1g}$ phonon mode which dynamically modifies the distance between Zr and Te atoms and Si layers. Frozen phonon DFT calculations, in which band structures are calculated as a function of nuclear position along the phonon mode coordinate, show that large displacements along this mode alter the materials electronic structure significantly, forcing bands to approach and even cross the Fermi energy. The incoherent part of the time domain response reveals that a delayed electronic response at low fluence discontinuously evolves into an instantaneous one for excitation densities larger than $3.43 times 10^{17}$ cm$^{-3}$. This sudden change of the dissipative channels for electronic excitations is indicative of an ultrafast Lifshitz transition which we tentatively associate to a change in topology of the Fermi surface driven by a symmetry preserving $A_{1g}$ phonon mode.
Tuning of electronic density-of-states singularities is a common route to unconventional metal physics. Conceptually, van Hove singularities are realized only in clean two-dimensional systems. Little attention has therefore been given to the disorder ed (dirty) limit. Here, we provide a magnetotransport study of the dirty metamagnetic system calcium-doped strontium ruthenate. Fermi liquid properties persist across the metamagnetic transition, but with an unusually strong variation of the Kadowaki-Woods ratio. This is revealed by a strong decoupling of inelastic electron scattering and electronic mass inferred from density-of-state probes. We discuss this Fermi liquid behavior in terms of a magnetic field tunable van Hove singularity in the presence of disorder. More generally, we show how dimensionality and disorder control the fate of transport properties across metamagnetic transitions.
89 - S. Ichinokura 2021
We demonstrate a new method to control the Fermi level around the van Hove singularity (VHS) in Li-intercalated graphene on the SiC substrate. By angle-resolved photoemission spectroscopy, we observed a clear Lifshitz transition in the vicinity of th e VHS by increasing the graphene thickness. This behavior is unexpected in a free-standing Li-intercalated graphene model. The calculation including the substrate suggests that the surface state stabilizes the Fermi level around the VHS of the Dirac bands via hybridization. In addition, we found that a sizable Schottky barrier is formed between graphene and the substrate. These properties allow us to explore the electronic phase diagram around the VHS by controlling the thickness and electric field in the device condition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا