ﻻ يوجد ملخص باللغة العربية
Electronic instabilities at the crossing of the Fermi energy with a Van Hove singularity in the density of states often lead to new phases of matter such as superconductivity, magnetism or density waves. However, in most materials this condition is difficult to control. In the case of single-layer graphene, the singularity is too far from the Fermi energy and hence difficult to reach with standard doping and gating techniques. Here we report the observation of low-energy Van Hove singularities in twisted graphene layers seen as two pronounced peaks in the density of states measured by scanning tunneling spectroscopy. We demonstrate that a rotation between stacked graphene layers can generate Van Hove singularities, which can be brought arbitrarily close to the Fermi energy by varying the angle of rotation. This opens intriguing prospects for Van Hove singularity engineering of electronic phases.
Understanding and tuning correlated states is of great interest and significance to modern condensed matter physics. The recent discovery of unconventional superconductivity and Mott-like insulating states in magic-angle twisted bilayer graphene (tBL
The possibility of triggering correlated phenomena by placing a singularity of the density of states near the Fermi energy remains an intriguing avenue towards engineering the properties of quantum materials. Twisted bilayer graphene is a key materia
Extensive scanning tunnelling microscopy and spectroscopy experiments complemented by first principles and parameterized tight binding calculations provide a clear answer to the existence, origin and robustness of van Hove singularities (vHs) in twis
Twisted graphene bilayers (TGBs) have low-energy van Hove singularities (VHSs) that are strongly localized around AA-stacked regions of the moire pattern. Therefore, they exhibit novel many-body electronic states, such as Mott-like insulator and unco
In a continuous search for the energy-efficient electronic switches, a great attention is focused on tunnel field-effect transistors (TFETs) demonstrating an abrupt dependence of the source-drain current on the gate voltage. Among all TFETs, those ba