ترغب بنشر مسار تعليمي؟ اضغط هنا

Are Negative Samples Necessary in Entity Alignment? An Approach with High Performance, Scalability and Robustness

109   0   0.0 ( 0 )
 نشر من قبل Xin Mao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Entity alignment (EA) aims to find the equivalent entities in different KGs, which is a crucial step in integrating multiple KGs. However, most existing EA methods have poor scalability and are unable to cope with large-scale datasets. We summarize three issues leading to such high time-space complexity in existing EA methods: (1) Inefficient graph encoders, (2) Dilemma of negative sampling, and (3) Catastrophic forgetting in semi-supervised learning. To address these challenges, we propose a novel EA method with three new components to enable high Performance, high Scalability, and high Robustness (PSR): (1) Simplified graph encoder with relational graph sampling, (2) Symmetric negative-free alignment loss, and (3) Incremental semi-supervised learning. Furthermore, we conduct detailed experiments on several public datasets to examine the effectiveness and efficiency of our proposed method. The experimental results show that PSR not only surpasses the previous SOTA in performance but also has impressive scalability and robustness.



قيم البحث

اقرأ أيضاً

Many AI-related tasks involve the interactions of data in multiple modalities. It has been a new trend to merge multi-modal information into knowledge graph(KG), resulting in multi-modal knowledge graphs (MMKG). However, MMKGs usually suffer from low coverage and incompleteness. To mitigate this problem, a viable approach is to integrate complementary knowledge from other MMKGs. To this end, although existing entity alignment approaches could be adopted, they operate in the Euclidean space, and the resulting Euclidean entity representations can lead to large distortion of KGs hierarchical structure. Besides, the visual information has yet not been well exploited. In response to these issues, in this work, we propose a novel multi-modal entity alignment approach, Hyperbolic multi-modal entity alignment(HMEA), which extends the Euclidean representation to hyperboloid manifold. We first adopt the Hyperbolic Graph Convolutional Networks (HGCNs) to learn structural representations of entities. Regarding the visual information, we generate image embeddings using the densenet model, which are also projected into the hyperbolic space using HGCNs. Finally, we combine the structure and visual representations in the hyperbolic space and use the aggregated embeddings to predict potential alignment results. Extensive experiments and ablation studies demonstrate the effectiveness of our proposed model and its components.
Entity alignment, aiming to identify equivalent entities across different knowledge graphs (KGs), is a fundamental problem for constructing large-scale KGs. Over the course of its development, supervision has been considered necessary for accurate al ignments. Inspired by the recent progress of self-supervised learning, we explore the extent to which we can get rid of supervision for entity alignment. Existing supervised methods for this task focus on pulling each pair of positive (labeled) entities close to each other. However, our analysis suggests that the learning of entity alignment can actually benefit more from pushing sampled (unlabeled) negatives far away than pulling positive aligned pairs close. We present SelfKG by leveraging this discovery to design a contrastive learning strategy across two KGs. Extensive experiments on benchmark datasets demonstrate that SelfKG without supervision can match or achieve comparable results with state-of-the-art supervised baselines. The performance of SelfKG demonstrates self-supervised learning offers great potential for entity alignment in KGs.
We study the problem of embedding-based entity alignment between knowledge graphs (KGs). Previous works mainly focus on the relational structure of entities. Some further incorporate another type of features, such as attributes, for refinement. Howev er, a vast of entity features are still unexplored or not equally treated together, which impairs the accuracy and robustness of embedding-based entity alignment. In this paper, we propose a novel framework that unifies multiple views of entities to learn embeddings for entity alignment. Specifically, we embed entities based on the views of entity names, relations and attributes, with several combination strategies. Furthermore, we design some cross-KG inference methods to enhance the alignment between two KGs. Our experiments on real-world datasets show that the proposed framework significantly outperforms the state-of-the-art embedding-based entity alignment methods. The selected views, cross-KG inference and combination strategies all contribute to the performance improvement.
Entity alignment which aims at linking entities with the same meaning from different knowledge graphs (KGs) is a vital step for knowledge fusion. Existing research focused on learning embeddings of entities by utilizing structural information of KGs for entity alignment. These methods can aggregate information from neighboring nodes but may also bring noise from neighbors. Most recently, several researchers attempted to compare neighboring nodes in pairs to enhance the entity alignment. However, they ignored the relations between entities which are also important for neighborhood matching. In addition, existing methods paid less attention to the positive interactions between the entity alignment and the relation alignment. To deal with these issues, we propose a novel Relation-aware Neighborhood Matching model named RNM for entity alignment. Specifically, we propose to utilize the neighborhood matching to enhance the entity alignment. Besides comparing neighbor nodes when matching neighborhood, we also try to explore useful information from the connected relations. Moreover, an iterative framework is designed to leverage the positive interactions between the entity alignment and the relation alignment in a semi-supervised manner. Experimental results on three real-world datasets demonstrate that the proposed model RNM performs better than state-of-the-art methods.
Named entity recognition systems perform well on standard datasets comprising English news. But given the paucity of data, it is difficult to draw conclusions about the robustness of systems with respect to recognizing a diverse set of entities. We p ropose a method for auditing the in-domain robustness of systems, focusing specifically on differences in performance due to the national origin of entities. We create entity-switched datasets, in which named entities in the original texts are replaced by plausible named entities of the same type but of different national origin. We find that state-of-the-art systems performance vary widely even in-domain: In the same context, entities from certain origins are more reliably recognized than entities from elsewhere. Systems perform best on American and Indian entities, and worst on Vietnamese and Indonesian entities. This auditing approach can facilitate the development of more robust named entity recognition systems, and will allow research in this area to consider fairness criteria that have received heightened attention in other predictive technology work.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا