ترغب بنشر مسار تعليمي؟ اضغط هنا

Entity-Switched Datasets: An Approach to Auditing the In-Domain Robustness of Named Entity Recognition Models

318   0   0.0 ( 0 )
 نشر من قبل Oshin Agarwal
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Named entity recognition systems perform well on standard datasets comprising English news. But given the paucity of data, it is difficult to draw conclusions about the robustness of systems with respect to recognizing a diverse set of entities. We propose a method for auditing the in-domain robustness of systems, focusing specifically on differences in performance due to the national origin of entities. We create entity-switched datasets, in which named entities in the original texts are replaced by plausible named entities of the same type but of different national origin. We find that state-of-the-art systems performance vary widely even in-domain: In the same context, entities from certain origins are more reliably recognized than entities from elsewhere. Systems perform best on American and Indian entities, and worst on Vietnamese and Indonesian entities. This auditing approach can facilitate the development of more robust named entity recognition systems, and will allow research in this area to consider fairness criteria that have received heightened attention in other predictive technology work.

قيم البحث

اقرأ أيضاً

In biomedical literature, it is common for entity boundaries to not align with word boundaries. Therefore, effective identification of entity spans requires approaches capable of considering tokens that are smaller than words. We introduce a novel, s ubword approach for named entity recognition (NER) that uses byte-pair encodings (BPE) in combination with convolutional and recurrent neural networks to produce byte-level tags of entities. We present experimental results on several standard biomedical datasets, namely the BioCreative VI Bio-ID, JNLPBA, and GENETAG datasets. We demonstrate competitive performance while bypassing the specialized domain expertise needed to create biomedical text tokenization rules.
Existing models for cross-domain named entity recognition (NER) rely on numerous unlabeled corpus or labeled NER training data in target domains. However, collecting data for low-resource target domains is not only expensive but also time-consuming. Hence, we propose a cross-domain NER model that does not use any external resources. We first introduce a Multi-Task Learning (MTL) by adding a new objective function to detect whether tokens are named entities or not. We then introduce a framework called Mixture of Entity Experts (MoEE) to improve the robustness for zero-resource domain adaptation. Finally, experimental results show that our model outperforms strong unsupervised cross-domain sequence labeling models, and the performance of our model is close to that of the state-of-the-art model which leverages extensive resources.
119 - Zihan Liu , Yan Xu , Tiezheng Yu 2020
Cross-domain named entity recognition (NER) models are able to cope with the scarcity issue of NER samples in target domains. However, most of the existing NER benchmarks lack domain-specialized entity types or do not focus on a certain domain, leadi ng to a less effective cross-domain evaluation. To address these obstacles, we introduce a cross-domain NER dataset (CrossNER), a fully-labeled collection of NER data spanning over five diverse domains with specialized entity categories for different domains. Additionally, we also provide a domain-related corpus since using it to continue pre-training language models (domain-adaptive pre-training) is effective for the domain adaptation. We then conduct comprehensive experiments to explore the effectiveness of leveraging different levels of the domain corpus and pre-training strategies to do domain-adaptive pre-training for the cross-domain task. Results show that focusing on the fractional corpus containing domain-specialized entities and utilizing a more challenging pre-training strategy in domain-adaptive pre-training are beneficial for the NER domain adaptation, and our proposed method can consistently outperform existing cross-domain NER baselines. Nevertheless, experiments also illustrate the challenge of this cross-domain NER task. We hope that our dataset and baselines will catalyze research in the NER domain adaptation area. The code and data are available at https://github.com/zliucr/CrossNER.
Current work in named entity recognition (NER) shows that data augmentation techniques can produce more robust models. However, most existing techniques focus on augmenting in-domain data in low-resource scenarios where annotated data is quite limite d. In contrast, we study cross-domain data augmentation for the NER task. We investigate the possibility of leveraging data from high-resource domains by projecting it into the low-resource domains. Specifically, we propose a novel neural architecture to transform the data representation from a high-resource to a low-resource domain by learning the patterns (e.g. style, noise, abbreviations, etc.) in the text that differentiate them and a shared feature space where both domains are aligned. We experiment with diverse datasets and show that transforming the data to the low-resource domain representation achieves significant improvements over only using data from high-resource domains.
In many scenarios, named entity recognition (NER) models severely suffer from unlabeled entity problem, where the entities of a sentence may not be fully annotated. Through empirical studies performed on synthetic datasets, we find two causes of perf ormance degradation. One is the reduction of annotated entities and the other is treating unlabeled entities as negative instances. The first cause has less impact than the second one and can be mitigated by adopting pretraining language models. The second cause seriously misguides a model in training and greatly affects its performances. Based on the above observations, we propose a general approach, which can almost eliminate the misguidance brought by unlabeled entities. The key idea is to use negative sampling that, to a large extent, avoids training NER models with unlabeled entities. Experiments on synthetic datasets and real-world datasets show that our model is robust to unlabeled entity problem and surpasses prior baselines. On well-annotated datasets, our model is competitive with the state-of-the-art method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا