ﻻ يوجد ملخص باللغة العربية
We report the first (in)elastic scattering measurement of $^{25}mathrm{Al}+p$ with the capability to select and measure in a broad energy range the proton resonances in $^{26}$Si contributing to the $^{22}$Mg$(alpha,p)$ reaction at type I x-ray burst energies. We measured spin-parities of four resonances above the $alpha$ threshold of $^{26}$Si that are found to strongly impact the $^{22}$Mg$(alpha,p)$ rate. The new rate advances a state-of-the-art model to remarkably reproduce lightcurves of the GS 1826$-$24 clocked burster with mean deviation $<$9 % and permits us to discover a strong correlation between the He abundance in the accreting envelope of photospheric radius expansion burster and the dominance of $^{22}$Mg$(alpha,p)$ branch.
The competing $^{22}$Ne($alpha,gamma$)$^{26}$Mg and $^{22}$Ne($alpha,n$)$^{25}$Mg reactions control the production of neutrons for the weak $s$-process in massive and AGB stars. In both systems, the ratio between the corresponding reaction rates stro
Type-I X-ray burst (XRB) light curves are sensitive to the models nuclear input and consequently affects the model-observation comparisons. $^{22}$Mg($alpha$,p)$^{25}$Al is among the most important reactions which directly impact the XRB light curve.
The $^{22}$Ne($alpha$,$gamma$)$^{26}$Mg and $^{22}$Ne($alpha$,n)$^{25}$Mg reactions play an important role in astrophysics because they have significant influence on the neutron flux during the weak branch of the s-process. We constrain the astrophys
The $^{23}$Na($alpha,p$)$^{26}$Mg reaction has been identified as having a significant impact on the nucleosynthesis of several nuclei between Ne and Ti in type-Ia supernovae, and of $^{23}$Na and $^{26}$Al in massive stars. The reaction has been sub
The rate of the $^{25}$Al($p$,$gamma$)$^{26}$Si reaction is one of the few key remaining nuclear uncertainties required for predicting the production of the cosmic $gamma$-ray emitter $^{26}$Al in explosive burning in novae. This reaction rate is dom