ﻻ يوجد ملخص باللغة العربية
Type-I X-ray burst (XRB) light curves are sensitive to the models nuclear input and consequently affects the model-observation comparisons. $^{22}$Mg($alpha$,p)$^{25}$Al is among the most important reactions which directly impact the XRB light curve. We report the first direct measurement of $^{22}$Mg($alpha$,p)$^{25}$Al using the Active Target Time Projection Chamber. XRB light curve model-observation comparison for the source $tt{GS 1826-24}$ using new reaction rate implies a less-compact neutron star than previously inferred. Additionally, our result removes an important uncertainty in XRB model calculations that previously hindered extraction of the neutron star compactness.
We report the first (in)elastic scattering measurement of $^{25}mathrm{Al}+p$ with the capability to select and measure in a broad energy range the proton resonances in $^{26}$Si contributing to the $^{22}$Mg$(alpha,p)$ reaction at type I x-ray burst
The competing $^{22}$Ne($alpha,gamma$)$^{26}$Mg and $^{22}$Ne($alpha,n$)$^{25}$Mg reactions control the production of neutrons for the weak $s$-process in massive and AGB stars. In both systems, the ratio between the corresponding reaction rates stro
The $^{22}$Ne($alpha$,$gamma$)$^{26}$Mg and $^{22}$Ne($alpha$,n)$^{25}$Mg reactions play an important role in astrophysics because they have significant influence on the neutron flux during the weak branch of the s-process. We constrain the astrophys
The current status of the reaction rate of $^{22}$Ne($alpha$,n)$^{25}$Mg is summarized. Among the latest new results, probably the most relevant is the conclusion that the E$_x$=11.15 MeV state in $^{26}$Mg has a non-natural parity, so it does not co
The rate of the $^{25}$Al($p$,$gamma$)$^{26}$Si reaction is one of the few key remaining nuclear uncertainties required for predicting the production of the cosmic $gamma$-ray emitter $^{26}$Al in explosive burning in novae. This reaction rate is dom