ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining the $^{22}$Ne($alpha$,$gamma$)$^{26}$Mg and $^{22}$Ne($alpha$,n)$^{25}$Mg reaction rates using sub-Coulomb $alpha$-transfer reactions

59   0   0.0 ( 0 )
 نشر من قبل Grigory Rogachev
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The $^{22}$Ne($alpha$,$gamma$)$^{26}$Mg and $^{22}$Ne($alpha$,n)$^{25}$Mg reactions play an important role in astrophysics because they have significant influence on the neutron flux during the weak branch of the s-process. We constrain the astrophysical rates for these reactions by measuring partial $alpha$-widths of resonances in $^{26}$Mg located in the Gamow window for the $^{22}$Ne+$alpha$ capture. These resonances were populated using $^{22}$Ne($^6$Li,d)$^{26}$Mg and $^{22}$Ne($^7$Li,t)$^{26}$Mg reactions at energies near the Coulomb barrier. At these low energies $alpha$-transfer reactions favor population of low spin states and the extracted partial $alpha$-widths for the observed resonances exhibit only minor dependence on the model parameters. The astrophysical rates for both the $^{22}$Ne($alpha$,$gamma$)$^{26}$Mg and the $^{22}$Ne($alpha$,n)$^{25}$Mg reactions are shown to be significantly different than the previously suggested values.



قيم البحث

اقرأ أيضاً

The competing $^{22}$Ne($alpha,gamma$)$^{26}$Mg and $^{22}$Ne($alpha,n$)$^{25}$Mg reactions control the production of neutrons for the weak $s$-process in massive and AGB stars. In both systems, the ratio between the corresponding reaction rates stro ngly impacts the total neutron budget and strongly influences the final nucleosynthesis. The $^{22}$Ne($alpha,gamma$)$^{26}$Mg and $^{22}$Ne($alpha,n$)$^{25}$Mg reaction rates was re-evaluated by using newly available information on $^{26}$Mg given by various recent experimental studies. Evaluations of The evaluated $^{22}$Ne($alpha,gamma$)$^{26}$Mg reaction rate remains substantially similar to that of Longland {it et al.} but, including recent results from Texas A&M, the $^{22}$Ne($alpha,n$)$^{25}$Mg reaction rate is lower at a range of astrophysically important temperatures. Stellar models computed with NEWTON and MESA predict decreased production of the weak branch $s$-process due to the decreased efficiency of $^{22}$Ne as a neutron source. Using the new reaction rates in the MESA model results in $^{96}$Zr/$^{94}$Zr and $^{135}$Ba/$^{136}$Ba ratios in much better agreement with the measured ratios from presolar SiC grains.
282 - Claudio Ugalde 2008
The current status of the reaction rate of $^{22}$Ne($alpha$,n)$^{25}$Mg is summarized. Among the latest new results, probably the most relevant is the conclusion that the E$_x$=11.15 MeV state in $^{26}$Mg has a non-natural parity, so it does not co ntribute to the rates of the $alpha$ + $^{22}$Ne reactions. However, it may be possible that other neighboring states contribute to the neutron yield at stellar temperatures. Here we make an account of some of the experimental work in the literature that is relevant to this state. Indeed, it would have been possible to avoid the controversy regarding this state before it even started.
The rate of the $^{25}$Al($p$,$gamma$)$^{26}$Si reaction is one of the few key remaining nuclear uncertainties required for predicting the production of the cosmic $gamma$-ray emitter $^{26}$Al in explosive burning in novae. This reaction rate is dom inated by three key resonances ($J^{pi}=0^{+}$, $1^{+}$ and $3^{+}$) in $^{26}$Si. Only the $3^{+}$ resonance strength has been directly constrained by experiment. A high resolution measurement of the $^{25}$Mg($d$,$p$) reaction was used to determine spectroscopic factors for analog states in the mirror nucleus, $^{26}$Mg. A first spectroscopic factor value is reported for the $0^{+}$ state at 6.256 MeV, and a strict upper limit is set on the value for the $1^{+}$ state at 5.691 MeV, that is incompatible with an earlier ($^{4}$He,$^{3}$He) study. These results are used to estimate proton partial widths, and resonance strengths of analog states in $^{26}$Si contributing to the $^{25}$Al($p$,$gamma$)$^{26}$Si reaction rate in nova burning conditions.
This paper examines the $^{18}$Ne($alpha, p_{0}$)$^{21}$Na cross-section relevant in X-ray bursts. The study was performed with the K600 magnetic spectrometer in coincidence with the CAKE, a silicon detector array, at iThemba LABS in Cape Town, South Africa. A 100-MeV proton beam was impinged on a $^{24}$Mg target to study the $^{24}$Mg($p,t$)$^{22}$Mg reaction. The triton ejectiles were momentum-analysed with the magnetic spectrometer and proton decays from the $^{22}$Mg recoil nucleus to the ground state of $^{21}$Na and various excited states thereof were detected with the CAKE. In doing so, we were able to compare our results to previous direct and indirect measurements of the $^{18}$Ne($alpha, p$)$^{21}$Na reaction.
66 - S. Ota , G. Christian , G. Lotay 2020
The astrophysical $s$-process is one of the two main processes forming elements heavier than iron. A key outstanding uncertainty surrounding $s$-process nucleosynthesis is the neutron flux generated by the ${}^{22}mathrm{Ne}(alpha, n){}^{25}mathrm{Mg }$ reaction during the He-core and C-shell burning phases of massive stars. This reaction, as well as the competing ${}^{22}mathrm{Ne}(alpha, gamma){}^{26}mathrm{Mg}$ reaction, is not well constrained in the important temperature regime from ${sim} 0.2$--$0.4$~GK, owing to uncertainties in the nuclear properties of resonances lying within the Gamow window. To address these uncertainties, we have performed a new measurement of the ${}^{22}mathrm{Ne}({}^{6}mathrm{Li}, d){}^{26}mathrm{Mg}$ reaction in inverse kinematics, detecting the outgoing deuterons and ${}^{25,26}mathrm{Mg}$ recoils in coincidence. We have established a new $n / gamma$ decay branching ratio of $1.14(26)$ for the key $E_x = 11.32$ MeV resonance in $^{26}mathrm{Mg}$, which results in a new $(alpha, n)$ strength for this resonance of $42(11)~mu$eV when combined with the well-established $(alpha, gamma)$ strength of this resonance. We have also determined new upper limits on the $alpha$ partial widths of neutron-unbound resonances at $E_x = 11.112,$ $11.163$, $11.169$, and $11.171$ MeV. Monte-Carlo calculations of the stellar ${}^{22}mathrm{Ne}(alpha, n){}^{25}mathrm{Mg}$ and ${}^{22}mathrm{Ne}(alpha, gamma){}^{26}mathrm{Mg}$ rates, which incorporate these results, indicate that both rates are substantially lower than previously thought in the temperature range from ${sim} 0.2$--$0.4$~GK.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا