ﻻ يوجد ملخص باللغة العربية
The performance of millimeter wave (mmWave) communications critically depends on the accuracy of beamforming both at base station (BS) and user terminals (UEs) due to high isotropic path-loss and channel attenuation. In high mobility environments, accurate beam alignment becomes even more challenging as the angles of the BS and each UE must be tracked reliably and continuously. In this work, focusing on the beamforming at the BS, we propose an adaptive method based on Recurrent Neural Networks (RNN) that tracks and predicts the Angle of Departure (AoD) of a given UE. Moreover, we propose a modified frame structure to reduce beam alignment overhead and hence increase the communication rate. Our numerical experiments in a highly non-linear mobility scenario show that our proposed method is able to track the AoD accurately and achieve higher communication rate compared to more traditional methods such as the particle filter.
Maintaining reliable millimeter wave (mmWave) connections to many fast-moving mobiles is a key challenge in the theory and practice of 5G systems. In this paper, we develop a new algorithm that can jointly track the beam direction and channel coeffic
In this paper, we propose a scheme called beam-nulling for MIMO adaptation. In the beam-nulling scheme, the eigenvector of the weakest subchannel is fed back and then signals are sent over a generated subspace orthogonal to the weakest subchannel. Th
We present a message passing algorithm for localization and tracking in multipath-prone environments that implicitly considers obstructed line-of-sight situations. The proposed adaptive probabilistic data association algorithm infers the position of
High-speed trains (HSTs) are being widely deployed around the world. To meet the high-rate data transmission requirements on HSTs, millimeter wave (mmWave) HST communications have drawn increasingly attentions. To realize sufficient link margin, mmWa
In this paper, we consider the problem of joint beam selection and link activation across a set of communication pairs to effectively control the interference between communication pairs via inactivating part communication pairs in ultra-dense device