ﻻ يوجد ملخص باللغة العربية
Maintaining reliable millimeter wave (mmWave) connections to many fast-moving mobiles is a key challenge in the theory and practice of 5G systems. In this paper, we develop a new algorithm that can jointly track the beam direction and channel coefficient of mmWave propagation paths using phased antenna arrays. Despite the significant difficulty in this problem, our algorithm can simultaneously achieve fast tracking speed, high tracking accuracy, and low pilot overhead. In static scenarios, this algorithm can converge to the minimum Cramer-Rao lower bound of beam direction with high probability. Simulations reveal that this algorithm greatly outperforms several existing algorithms. Even at SNRs as low as 5dB, our algorithm is capable of tracking a mobile moving at an angular velocity of 5.45 degrees per second and achieving over 95% of channel capacity with a 32-antenna phased array, by inserting only 10 pilots per second.
The performance of millimeter wave (mmWave) communications critically depends on the accuracy of beamforming both at base station (BS) and user terminals (UEs) due to high isotropic path-loss and channel attenuation. In high mobility environments, ac
A communication setup is considered where a transmitter wishes to convey a message to a receiver and simultaneously estimate the state of that receiver through a common waveform. The state is estimated at the transmitter by means of generalized feedb
We consider channel/subspace tracking systems for temporally correlated millimeter wave (e.g., E-band) multiple-input multiple-output (MIMO) channels. Our focus is given to the tracking algorithm in the non-line-of-sight (NLoS) environment, where the
We propose a deep-learning approach for the joint MIMO detection and channel decoding problem. Conventional MIMO receivers adopt a model-based approach for MIMO detection and channel decoding in linear or iterative manners. However, due to the comple
This paper considers a reconfigurable intelligent surface (RIS)-aided millimeter wave (mmWave) downlink communication system where hybrid analog-digital beamforming is employed at the base station (BS). We formulate a power minimization problem by jo