ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a scheme called beam-nulling for MIMO adaptation. In the beam-nulling scheme, the eigenvector of the weakest subchannel is fed back and then signals are sent over a generated subspace orthogonal to the weakest subchannel. Theoretical analysis and numerical results show that the capacity of beam-nulling is closed to the optimal water-filling at medium SNR. Additionally, signal-to-interference-plus-noise ratio (SINR) of MMSE receiver is derived for beam-nulling. Then the paper presents the associated average bit-error rate (BER) of beam-nulling numerically which is verified by simulation. Simulation results are also provided to compare beam-nulling with beamforming. To improve performance further, beam-nulling is concatenated with linear dispersion code. Simulation results are also provided to compare the concatenated beam-nulling scheme with the beamforming scheme at the same data rate. Additionally, the existing beamforming and new proposed beam-nulling can be extended if more than one eigenvector is available at the transmitter. The new extended schemes are called multi-dimensional (MD) beamforming and MD beam-nulling. Theoretical analysis and numerical results in terms of capacity are also provided to evaluate the new extended schemes. Simulation results show that the MD scheme with LDC can outperform the MD scheme with STBC significantly when the data rate is high.
This paper studies the capacity of a general multiple-input multiple-output (MIMO) free-space optical intensity channel under a per-input-antenna peak-power constraint and a total average-power constraint over all input antennas. The focus is on the
Cognitive radios have been studied recently as a means to utilize spectrum in a more efficient manner. This paper focuses on the fundamental limits of operation of a MIMO cognitive radio network with a single licensed user and a single cognitive user
In this work, novel upper and lower bounds for the capacity of channels with arbitrary constraints on the support of the channel input symbols are derived. As an immediate practical application, the case of multiple-input multiple-output channels wit
The performance of millimeter wave (mmWave) communications critically depends on the accuracy of beamforming both at base station (BS) and user terminals (UEs) due to high isotropic path-loss and channel attenuation. In high mobility environments, ac
Discrete-time Rayleigh fading multiple-input multiple-output (MIMO) channels are considered, with no channel state information at the transmitter and receiver. The fading is assumed to be correlated in time and independent from antenna to antenna. Pe