ﻻ يوجد ملخص باللغة العربية
In this paper, we obtain a quantitative estimate of unique continuation and an observability inequality from an equidistributed set for solutions of the diffusion equation in the whole space RN. This kind of observability indicates that the total energy of solutions can be controlled by the energy localized in a measurable subset, which is equidistributed over the whole space. The proof of our results is based on an interesting reduction method [18, 22], as well as the propagation of smallness for the gradient of solutions to elliptic equations [24].
In this paper we prove a quantitative form of the strong unique continuation property for the Lame system when the Lame coefficients $mu$ is Lipschitz and $lambda$ is essentially bounded in dimension $nge 2$. This result is an improvement of our earl
It is shown that a strong solution of the Camassa-Holm equation, initially decaying exponentially together with its spacial derivative, must be identically equal to zero if it also decays exponentially at a later time. In particular, a strong solutio
An algebraic lower bound on the energy decay for solutions of the advection-diffusion equation in $mathbb{R}^d$ with $d=2,3$ is derived using the Fourier splitting method. Motivated by a conjecture on mixing of passive scalars in fluids, a lower boun
We prove a strong conditional unique continuation estimate for irreducible quasimodes in rotationally invariant neighbourhoods on compact surfaces of revolution. The estimate states that Laplace quasimodes which cannot be decomposed as a sum of other
We study the long time behavior of solutions of the non-autonomous Reaction-Diffusion equation defined on the entire space R^n when external terms are unbounded in a phase space. The existence of a pullback global attractor for the equation is establ