ترغب بنشر مسار تعليمي؟ اضغط هنا

Persistence Properties and Unique Continuation of solutions of the Camassa-Holm equation

92   0   0.0 ( 0 )
 نشر من قبل Gustavo Ponce
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is shown that a strong solution of the Camassa-Holm equation, initially decaying exponentially together with its spacial derivative, must be identically equal to zero if it also decays exponentially at a later time. In particular, a strong solution of the Cauchy problem with compact initial profile can not be compactly supported at any later time unless it is the zero solution.



قيم البحث

اقرأ أيضاً

The soliton solutions of the Camassa-Holm equation are derived by the implementation of the dressing method. The form of the one and two soliton solutions coincides with the form obtained by other methods.
An integrable semi-discretization of the Camassa-Holm equation is presented. The keys of its construction are bilinear forms and determinant structure of solutions of the CH equation. Determinant formulas of $N$-soliton solutions of the continuous an d semi-discrete Camassa-Holm equations are presented. Based on determinant formulas, we can generate multi-soliton, multi-cuspon and multi-soliton-cuspon solutions. Numerical computations using the integrable semi-discrete Camassa-Holm equation are performed. It is shown that the integrable semi-discrete Camassa-Holm equation gives very accurate numerical results even in the cases of cuspon-cuspon and soliton-cuspon interactions. The numerical computation for an initial value condition, which is not an exact solution, is also presented.
175 - Ying Fu , Yue Liu , 2010
Considered herein are the generalized Camassa-Holm and Degasperis-Procesi equations in the spatially periodic setting. The precise blow-up scenarios of strong solutions are derived for both of equations. Several conditions on the initial data guarant eeing the development of singularities in finite time for strong solutions of these two equations are established. The exact blow-up rates are also determined. Finally, geometric descriptions of these two integrable equations from non-stretching invariant curve flows in centro-equiaffine geometries, pseudo-spherical surfaces and affine surfaces are given.
In this paper, we study orbital stability of peakons for the generalized modified Camassa-Holm (gmCH) equation, which is a natural higher-order generalization of the modified Camassa-Holm (mCH) equation, and admits Hamiltonian form and single peakons . We first show that the single peakon is the usual weak solution of the PDEs. Some sign invariant properties and conserved densities are presented. Next, by constructing the corresponding auxiliary function $h(t,,x)$ and establishing a delicate polynomial inequality relating to the two conserved densities with the maximal value of approximate solutions, the orbital stability of single peakon of the gmCH equation is verified. We introduce a new approach to prove the key inequality, which is different from that used for the mCH equation. This extends the result on the stability of peakons for the mCH equation (Comm. Math. Phys., 322:967-997, 2013) successfully to the higher-order case, and is helpful to understand how higher-order nonlinearities affect the dispersion dynamics.
We study the existence, uniqueness and regularity of solutions to the $n$-dimensional ($n=2,3$) Camassa-Holm equations with fractional Laplacian viscosity with smooth initial data. It is a coupled system between the Navier-Stokes equations with nonlo cal viscosity and a Helmholtz equation. The main difficulty lies in establishing some a priori estimates for the fractional Laplacian viscosity. To achieve this, we need to explore suitable fractional-power Sobolev-type estimates, and bilinear estimates for fractional derivatives. Especially, for the critical case $displaystyle s=frac{n}{4}$ with $n=2,3$, we will make extra efforts for acquiring the expected estimates as obtained in the case $displaystyle frac{n}{4}<s<1$. By the aid of the fractional Leibniz rule and the nonlocal version of Ladyzhenskayas inequality, we prove the existence, uniqueness and regularity to the Camassa-Holm equations under study by the energy method and a bootstrap argument, which rely crucially on the fractional Laplacian viscosity. In particular, under the critical case $s=dfrac{n}{4}$, the nonlocal version of Ladyzhenskayas inequality is skillfully used, and the smallness of initial data in several Sobolev spaces is required to gain the desired results concernig existence, uniqueness and regularity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا