ترغب بنشر مسار تعليمي؟ اضغط هنا

Lower bounds on mixing norms for the advection diffusion equation in $mathbb{R}^d$

75   0   0.0 ( 0 )
 نشر من قبل Camilla Nobili Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An algebraic lower bound on the energy decay for solutions of the advection-diffusion equation in $mathbb{R}^d$ with $d=2,3$ is derived using the Fourier splitting method. Motivated by a conjecture on mixing of passive scalars in fluids, a lower bound on the $L^2-$ norm of the inverse gradient of the solution is obtained via gradient estimates and interpolation.

قيم البحث

اقرأ أيضاً

We consider the Cauchy problem for the nonlinear wave equation $u_{tt} - Delta_x u +q(t, x) u + u^3 = 0$ with smooth potential $q(t, x) geq 0$ having compact support with respect to $x$. The linear equation without the nonlinear term $u^3$ and potent ial periodic in $t$ may have solutions with exponentially increasing as $ t to infty$ norm $H^1({mathbb R}^3_x)$. In [2] it was established that adding the nonlinear term $u^3$ the $H^1({mathbb R}^3_x)$ norm of the solution is polynomially bounded for every choice of $q$. In this paper we show that $H^k({mathbb R}^3_x)$ norm of this global solution is also polynomially bounded. To prove this we apply a different argument based on the analysis of a sequence ${Y_k(ntau_k)}_{n = 0}^{infty}$ with suitably defined energy norm $Y_k(t)$ and $0 < tau_k <1.$
We prove $L^p$ lower bounds for Coulomb energy for radially symmetric functions in $dot H^s(R^3)$ with $frac 12 <s<frac{3}{2}$. In case $frac 12 <s leq 1$ we show that the lower bounds are sharp.
121 - Shiwu Yang 2019
In this paper, we use Dafermos-Rodnianskis new vector field method to study the asymptotic pointwise decay properties for solutions of energy subcritical defocusing semilinear wave equations in $mathbb{R}^{1+3}$. We prove that the solution decays as quickly as linear waves for $p>frac{1+sqrt{17}}{2}$, covering part of the sub-conformal case, while for the range $2<pleq frac{1+sqrt{17}}{2}$, the solution still decays with rate at least $t^{-frac{1}{3}}$. As a consequence, the solution scatters in energy space when $p>2.3542$. We also show that the solution is uniformly bounded when $p>frac{3}{2}$.
We study mass preserving transport of passive tracers in the low-diffusivity limit using Lagrangian coordinates. Over finite-time intervals, the solution-operator of the nonautonomous diffusion equation is approximated by that of a time-averaged diff usion equation. We show that leading order asymptotics that hold for functions [Krol, 1991] extend to the dominant nontrivial singular value. This answers questions raised in [Karrasch & Keller, 2020]. The generator of the time-averaged diffusion/heat semigroup is a Laplace operator associated to a weighted manifold structure on the material manifold. We show how geometrical properties of this weighted manifold directly lead to physical transport quantities of the nonautonomous equation in the low-diffusivity limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا