ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal charging of a superconducting quantum battery

181   0   0.0 ( 0 )
 نشر من قبل Alan Costa Santos
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum batteries are miniature energy storage devices and play a very important role in quantum thermodynamics. In recent years, quantum batteries have been extensively studied, but limited in theoretical level. Here we report the experimental realization of a quantum battery based on superconducting qubits. Our model explores dark and bright states to achieve stable and powerful charging processes, respectively. Our scheme makes use of the quantum adiabatic brachistochrone, which allows us to speed up the {battery ergotropy injection. Due to the inherent interaction of the system with its surrounding, the battery exhibits a self-discharge, which is shown to be described by a supercapacitor-like self-discharging mechanism. Our results paves the way for proposals of new superconducting circuits able to store extractable work for further usage.

قيم البحث

اقرأ أيضاً

We present a collision model for the charging of a quantum battery by identical nonequilibrium qubit units. When the units are prepared in a mixture of energy eigenstates, the energy gain in the battery can be described by a classical random walk, wh ere both average energy and variance grow linearly with time. Conversely, when the qubits contain quantum coherence, interference effects buildup in the battery and lead to a faster spreading of the energy distribution, reminiscent of a quantum random walk. This can be exploited for faster and more efficient charging of a battery initialized in the ground state. Specifically, we show that coherent protocols can yield higher charging power than any possible incoherent strategy, demonstrating a quantum speed-up at the level of a single battery. Finally, we characterize the amount of extractable work from the battery through the notion of ergotropy.
To take quantum advantage of collective effects in many-body system, we design an elementary block for building multipartite quantum battery, which enables charging an atomic ensemble with optimal numbers in a common thermal bath. One achieves maximu m free energy as the stored energy in the steady state, which is prior to each atom parallel charging independently. It ascribes to quantum collective effects in the ensemble of atoms induced by the competition between the coherent driving and decoherent dissipation. The corresponding thermodynamic efficiency of the energy storage is analyzed. The existence of the optimal elementary units of multipartite quantum battery provide a guideline for designing a realizable charging scheme.
We consider a quantum battery modeled as a set of N independent two-level quantum systems driven by a time dependent classical source. Different figures of merit, such as stored energy, time of charging and energy quantum fluctuations during the char ging process, are characterized in a wide range of parameters, by means of numerical approach and suitable analytical approximation scheme. Particular emphasis is put on the role of different initial conditions, describing the preparation state of the quantum battery, as well as on the sensitivity to the functional form of the external time-dependent drive. It is shown that an optimal charging protocol, characterized by fast charging time and the absence of charging fluctuations, can be achieved starting from the ground state of each two-level system, while other pure preparation states are less efficient. Moreover, we argue that a periodic train of peaked rectangular pulses can lead to fast charging. This study aims at providing a useful theoretical background in view of future experimental solid-state implementations.
One of the most fundamental tasks in quantum thermodynamics is extracting energy from one system and subsequently storing this energy in an appropriate battery. Both of these steps, work extraction and charging, can be viewed as cyclic Hamiltonian pr ocesses acting on individual quantum systems. Interestingly, so-called passive states exist, whose energy cannot be lowered by unitary operations, but it is safe to assume that the energy of any not fully charged battery may be increased unitarily. However, unitaries raising the average energy by the same amount may differ in qualities such as their precision, fluctuations, and charging power. Moreover, some unitaries may be extremely difficult to realize in practice. It is hence of crucial importance to understand the qualities that can be expected from practically implementable transformations. Here, we consider the limitations on charging batteries when restricting to the feasibly realizable family of Gaussian unitaries. We derive optimal protocols for general unitary operations as well as for the restriction to easier implementable Gaussian unitaries. We find that practical Gaussian battery charging, while performing significantly less well than is possible in principle, still offers asymptotically vanishing relative charge variances and fluctuations.
We consider a collection of two level systems, such as qubits, embedded into a microwave cavity as a promising candidate for the realization of high power quantum batteries. In this perspective, the possibility to design devices where the conventiona l single-photon coupling is suppressed and the dominant interaction is mediated by two-photon processes is investigated, opening the way to an even further enhancement of the charging performance. By solving a Dicke model with both single- and two-photon coupling we determine the range of parameters where the latter unconventional interaction dominates the dynamics of the system leading to better performances both in the charging times and average charging power of the QB compared to the single-photon case. In addition, the scaling of the maximum stored energy, fluctuations and charging power with the finite number of qubits N is inspected. While the energy and fluctuations scale linearly with N, the quadratic growth of the average power leads to a relevant improvement of the charging performance of quantum batteries based on this scheme with respect to the purely single-photon coupling case. Moreover, it is shown that the charging process is progressively faster by increasing the coupling from the weak to the ultra-strong regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا