ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast charging in a two-photon Dicke quantum battery

245   0   0.0 ( 0 )
 نشر من قبل Alba Crescente
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a collection of two level systems, such as qubits, embedded into a microwave cavity as a promising candidate for the realization of high power quantum batteries. In this perspective, the possibility to design devices where the conventional single-photon coupling is suppressed and the dominant interaction is mediated by two-photon processes is investigated, opening the way to an even further enhancement of the charging performance. By solving a Dicke model with both single- and two-photon coupling we determine the range of parameters where the latter unconventional interaction dominates the dynamics of the system leading to better performances both in the charging times and average charging power of the QB compared to the single-photon case. In addition, the scaling of the maximum stored energy, fluctuations and charging power with the finite number of qubits N is inspected. While the energy and fluctuations scale linearly with N, the quadratic growth of the average power leads to a relevant improvement of the charging performance of quantum batteries based on this scheme with respect to the purely single-photon coupling case. Moreover, it is shown that the charging process is progressively faster by increasing the coupling from the weak to the ultra-strong regime.



قيم البحث

اقرأ أيضاً

We consider a quantum battery modeled as a set of N independent two-level quantum systems driven by a time dependent classical source. Different figures of merit, such as stored energy, time of charging and energy quantum fluctuations during the char ging process, are characterized in a wide range of parameters, by means of numerical approach and suitable analytical approximation scheme. Particular emphasis is put on the role of different initial conditions, describing the preparation state of the quantum battery, as well as on the sensitivity to the functional form of the external time-dependent drive. It is shown that an optimal charging protocol, characterized by fast charging time and the absence of charging fluctuations, can be achieved starting from the ground state of each two-level system, while other pure preparation states are less efficient. Moreover, we argue that a periodic train of peaked rectangular pulses can lead to fast charging. This study aims at providing a useful theoretical background in view of future experimental solid-state implementations.
Quantum information theorems state that it is possible to exploit collective quantum resources to greatly enhance the charging power of quantum batteries (QBs) made of many identical elementary units. We here present and solve a model of a QB that ca n be engineered in solid-state architectures. It consists of $N$ two-level systems coupled to a single photonic mode in a cavity. We contrast this collective model (Dicke QB), whereby entanglement is genuinely created by the common photonic mode, to the one in which each two-level system is coupled to its own separate cavity mode (Rabi QB). By employing exact diagonalization, we demonstrate the emergence of a quantum advantage in the charging power of Dicke QBs, which scales like $sqrt{N}$ for $Ngg 1$.
We consider a quantum battery that is based on a two-level system coupled with a cavity radiation by means of a two-photon interaction. Various figures of merit, such as stored energy, average charging power, energy fluctuations, and extractable work are investigated, considering, as possible initial conditions for the cavity, a Fock state, a coherent state, and a squeezed state. We show that the first state leads to better performances for the battery. However, a coherent state with the same average number of photons, even if it is affected by stronger fluctuations in the stored energy, results in quite interesting performance, in particular since it allows for almost completely extracting the stored energy as usable work at short enough times.
The ability to coherently couple arbitrary harmonic oscillators in a fully-controlled way is an important tool to process quantum information. Coupling between quantum harmonic oscillators has previously been demonstrated in several physical systems by use of a two-level system as a mediating element. Direct interaction at the quantum level has only recently been realized by use of resonant coupling between trapped ions. Here we implement a tunable direct coupling between the microwave harmonics of a superconducting resonator by use of parametric frequency conversion. We accomplish this by coupling the mode currents of two harmonics through a superconducting quantum interference device (SQUID) and modulating its flux at the difference (~ 7 GHz) of the harmonic frequencies. We deterministically prepare a single-photon Fock state and coherently manipulate it between multiple modes, effectively controlling it in a superposition of two different colours. This parametric interaction can be described as a beam-splitter-like operation that couples different frequency modes. As such, it could be used to implement linear optical quantum computing protocols on-chip.
The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا