ترغب بنشر مسار تعليمي؟ اضغط هنا

AutoVideo: An Automated Video Action Recognition System

107   0   0.0 ( 0 )
 نشر من قبل Daochen Zha
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Action recognition is a crucial task for video understanding. In this paper, we present AutoVideo, a Python system for automated video action recognition. It currently supports seven action recognition algorithms and various pre-processing modules. Unlike the existing libraries that only provide model zoos, AutoVideo is built with the standard pipeline language. The basic building block is primitive, which wraps a pre-processing module or an algorithm with some hyperparameters. AutoVideo is highly modular and extendable. It can be easily combined with AutoML searchers. The pipeline language is quite general so that we can easily enrich AutoVideo with algorithms for various other video-related tasks in the future. AutoVideo is released under MIT license at https://github.com/datamllab/autovideo



قيم البحث

اقرأ أيضاً

From just a short glance at a video, we can often tell whether a persons action is intentional or not. Can we train a model to recognize this? We introduce a dataset of in-the-wild videos of unintentional action, as well as a suite of tasks for recog nizing, localizing, and anticipating its onset. We train a supervised neural network as a baseline and analyze its performance compared to human consistency on the tasks. We also investigate self-supervised representations that leverage natural signals in our dataset, and show the effectiveness of an approach that uses the intrinsic speed of video to perform competitively with highly-supervised pretraining. However, a significant gap between machine and human performance remains. The project website is available at https://oops.cs.columbia.edu
93 - Yuqi Huo , Xiaoli Xu , Yao Lu 2019
Video action recognition, which is topical in computer vision and video analysis, aims to allocate a short video clip to a pre-defined category such as brushing hair or climbing stairs. Recent works focus on action recognition with deep neural networ ks that achieve state-of-the-art results in need of high-performance platforms. Despite the fast development of mobile computing, video action recognition on mobile devices has not been fully discussed. In this paper, we focus on the novel mobile video action recognition task, where only the computational capabilities of mobile devices are accessible. Instead of raw videos with huge storage, we choose to extract multiple modalities (including I-frames, motion vectors, and residuals) directly from compressed videos. By employing MobileNetV2 as backbone, we propose a novel Temporal Trilinear Pooling (TTP) module to fuse the multiple modalities for mobile video action recognition. In addition to motion vectors, we also provide a temporal fusion method to explicitly induce the temporal context. The efficiency test on a mobile device indicates that our model can perform mobile video action recognition at about 40FPS. The comparative results on two benchmarks show that our model outperforms existing action recognition methods in model size and time consuming, but with competitive accuracy.
Training robust deep video representations has proven to be much more challenging than learning deep image representations. This is in part due to the enormous size of raw video streams and the high temporal redundancy; the true and interesting signa l is often drowned in too much irrelevant data. Motivated by that the superfluous information can be reduced by up to two orders of magnitude by video compression (using H.264, HEVC, etc.), we propose to train a deep network directly on the compressed video. This representation has a higher information density, and we found the training to be easier. In addition, the signals in a compressed video provide free, albeit noisy, motion information. We propose novel techniques to use them effectively. Our approach is about 4.6 times faster than Res3D and 2.7 times faster than ResNet-152. On the task of action recognition, our approach outperforms all the other methods on the UCF-101, HMDB-51, and Charades dataset.
149 - Siwei Liu 2021
To overcome the limitations of convolutional neural network in the process of facial expression recognition, a facial expression recognition model Capsule-LSTM based on video frame sequence is proposed. This model is composed of three networks includ ingcapsule encoders, capsule decoders and LSTM network. The capsule encoder extracts the spatial information of facial expressions in video frames. Capsule decoder reconstructs the images to optimize the network. LSTM extracts the temporal information between video frames and analyzes the differences in expression changes between frames. The experimental results from the MMI dataset show that the Capsule-LSTM model proposed in this paper can effectively improve the accuracy of video expression recognition.
418 - Lili Meng , Bo Zhao , Bo Chang 2018
Inspired by the observation that humans are able to process videos efficiently by only paying attention where and when it is needed, we propose an interpretable and easy plug-in spatial-temporal attention mechanism for video action recognition. For s patial attention, we learn a saliency mask to allow the model to focus on the most salient parts of the feature maps. For temporal attention, we employ a convolutional LSTM based attention mechanism to identify the most relevant frames from an input video. Further, we propose a set of regularizers to ensure that our attention mechanism attends to coherent regions in space and time. Our model not only improves video action recognition accuracy, but also localizes discriminative regions both spatially and temporally, despite being trained in a weakly-supervised manner with only classification labels (no bounding box labels or time frame temporal labels). We evaluate our approach on several public video action recognition datasets with ablation studies. Furthermore, we quantitatively and qualitatively evaluate our models ability to localize discriminative regions spatially and critical frames temporally. Experimental results demonstrate the efficacy of our approach, showing superior or comparable accuracy with the state-of-the-art methods while increasing model interpretability.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا