ترغب بنشر مسار تعليمي؟ اضغط هنا

Mobile Video Action Recognition

94   0   0.0 ( 0 )
 نشر من قبل Zhiwu Lu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Video action recognition, which is topical in computer vision and video analysis, aims to allocate a short video clip to a pre-defined category such as brushing hair or climbing stairs. Recent works focus on action recognition with deep neural networks that achieve state-of-the-art results in need of high-performance platforms. Despite the fast development of mobile computing, video action recognition on mobile devices has not been fully discussed. In this paper, we focus on the novel mobile video action recognition task, where only the computational capabilities of mobile devices are accessible. Instead of raw videos with huge storage, we choose to extract multiple modalities (including I-frames, motion vectors, and residuals) directly from compressed videos. By employing MobileNetV2 as backbone, we propose a novel Temporal Trilinear Pooling (TTP) module to fuse the multiple modalities for mobile video action recognition. In addition to motion vectors, we also provide a temporal fusion method to explicitly induce the temporal context. The efficiency test on a mobile device indicates that our model can perform mobile video action recognition at about 40FPS. The comparative results on two benchmarks show that our model outperforms existing action recognition methods in model size and time consuming, but with competitive accuracy.



قيم البحث

اقرأ أيضاً

Training robust deep video representations has proven to be much more challenging than learning deep image representations. This is in part due to the enormous size of raw video streams and the high temporal redundancy; the true and interesting signa l is often drowned in too much irrelevant data. Motivated by that the superfluous information can be reduced by up to two orders of magnitude by video compression (using H.264, HEVC, etc.), we propose to train a deep network directly on the compressed video. This representation has a higher information density, and we found the training to be easier. In addition, the signals in a compressed video provide free, albeit noisy, motion information. We propose novel techniques to use them effectively. Our approach is about 4.6 times faster than Res3D and 2.7 times faster than ResNet-152. On the task of action recognition, our approach outperforms all the other methods on the UCF-101, HMDB-51, and Charades dataset.
We present Mobile Video Networks (MoViNets), a family of computation and memory efficient video networks that can operate on streaming video for online inference. 3D convolutional neural networks (CNNs) are accurate at video recognition but require l arge computation and memory budgets and do not support online inference, making them difficult to work on mobile devices. We propose a three-step approach to improve computational efficiency while substantially reducing the peak memory usage of 3D CNNs. First, we design a video network search space and employ neural architecture search to generate efficient and diverse 3D CNN architectures. Second, we introduce the Stream Buffer technique that decouples memory from video clip duration, allowing 3D CNNs to embed arbitrary-length streaming video sequences for both training and inference with a small constant memory footprint. Third, we propose a simple ensembling technique to improve accuracy further without sacrificing efficiency. These three progressive techniques allow MoViNets to achieve state-of-the-art accuracy and efficiency on the Kinetics, Moments in Time, and Charades video action recognition datasets. For instance, MoViNet-A5-Stream achieves the same accuracy as X3D-XL on Kinetics 600 while requiring 80% fewer FLOPs and 65% less memory. Code will be made available at https://github.com/tensorflow/models/tree/master/official/vision.
Deep learning has achieved great success in recognizing video actions, but the collection and annotation of training data are still quite laborious, which mainly lies in two aspects: (1) the amount of required annotated data is large; (2) temporally annotating the location of each action is time-consuming. Works such as few-shot learning or untrimmed video recognition have been proposed to handle either one aspect or the other. However, very few existing works can handle both issues simultaneously. In this paper, we target a new problem, Annotation-Efficient Video Recognition, to reduce the requirement of annotations for both large amount of samples and the action location. Such problem is challenging due to two aspects: (1) the untrimmed videos only have weak supervision; (2) video segments not relevant to current actions of interests (background, BG) could contain actions of interests (foreground, FG) in novel classes, which is a widely existing phenomenon but has rarely been studied in few-shot untrimmed video recognition. To achieve this goal, by analyzing the property of BG, we categorize BG into informative BG (IBG) and non-informative BG (NBG), and we propose (1) an open-set detection based method to find the NBG and FG, (2) a contrastive learning method to learn IBG and distinguish NBG in a self-supervised way, and (3) a self-weighting mechanism for the better distinguishing of IBG and FG. Extensive experiments on ActivityNet v1.2 and ActivityNet v1.3 verify the rationale and effectiveness of the proposed methods.
292 - Yanghao Li , Sijie Song , Yuqi Li 2018
Temporal modeling in videos is a fundamental yet challenging problem in computer vision. In this paper, we propose a novel Temporal Bilinear (TB) model to capture the temporal pairwise feature interactions between adjacent frames. Compared with some existing temporal methods which are limited in linear transformations, our TB model considers explicit quadratic bilinear transformations in the temporal domain for motion evolution and sequential relation modeling. We further leverage the factorized bilinear model in linear complexity and a bottleneck network design to build our TB blocks, which also constrains the parameters and computation cost. We consider two schemes in terms of the incorporation of TB blocks and the original 2D spatial convolutions, namely wide and deep Temporal Bilinear Networks (TBN). Finally, we perform experiments on several widely adopted datasets including Kinetics, UCF101 and HMDB51. The effectiveness of our TBNs is validated by comprehensive ablation analyses and comparisons with various state-of-the-art methods.
We investigate the problem of representing an entire video using CNN features for human action recognition. Currently, limited by GPU memory, we have not been able to feed a whole video into CNN/RNNs for end-to-end learning. A common practice is to u se sampled frames as inputs and video labels as supervision. One major problem of this popular approach is that the local samples may not contain the information indicated by global labels. To deal with this problem, we propose to treat the deep networks trained on local inputs as local feature extractors. After extracting local features, we aggregate them into global features and train another mapping function on the same training data to map the global features into global labels. We study a set of problems regarding this new type of local features such as how to aggregate them into global features. Experimental results on HMDB51 and UCF101 datasets show that, for these new local features, a simple maximum pooling on the sparsely sampled features lead to significant performance improvement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا