ترغب بنشر مسار تعليمي؟ اضغط هنا

Knowledge Graph Augmented Political Perspective Detection in News Media

165   0   0.0 ( 0 )
 نشر من قبل Shangbin Feng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Identifying political perspective in news media has become an important task due to the rapid growth of political commentary and the increasingly polarized ideologies. Previous approaches only focus on leveraging the semantic information and leaves out the rich social and political context that helps individuals understand political stances. In this paper, we propose a perspective detection method that incorporates external knowledge of real-world politics. Specifically, we construct a contemporary political knowledge graph with 1,071 entities and 10,703 triples. We then build a heterogeneous information network for each news document that jointly models article semantics and external knowledge in knowledge graphs. Finally, we apply gated relational graph convolutional networks and conduct political perspective detection as graph-level classification. Extensive experiments show that our method achieves the best performance and outperforms state-of-the-art methods by 5.49%. Numerous ablation studies further bear out the necessity of external knowledge and the effectiveness of our graph-based approach.



قيم البحث

اقرأ أيضاً

63 - Lei Cao , Huijun Zhang , 2020
A large number of individuals are suffering from suicidal ideation in the world. There are a number of causes behind why an individual might suffer from suicidal ideation. As the most popular platform for self-expression, emotion release, and persona l interaction, individuals may exhibit a number of symptoms of suicidal ideation on social media. Nevertheless, challenges from both data and knowledge aspects remain as obstacles, constraining the social media-based detection performance. Data implicitness and sparsity make it difficult to discover the inner true intentions of individuals based on their posts. Inspired by psychological studies, we build and unify a high-level suicide-oriented knowledge graph with deep neural networks for suicidal ideation detection on social media. We further design a two-layered attention mechanism to explicitly reason and establish key risk factors to individuals suicidal ideation. The performance study on microblog and Reddit shows that: 1) with the constructed personal knowledge graph, the social media-based suicidal ideation detection can achieve over 93% accuracy; and 2) among the six categories of personal factors, post, personality, and experience are the top-3 key indicators. Under these categories, posted text, stress level, stress duration, posted image, and ruminant thinking contribute to ones suicidal ideation detection.
Knowledge graphs (KGs) have helped neural models improve performance on various knowledge-intensive tasks, like question answering and item recommendation. By using attention over the KG, such KG-augmented models can also explain which KG information was most relevant for making a given prediction. In this paper, we question whether these models are really behaving as we expect. We show that, through a reinforcement learning policy (or even simple heuristics), one can produce deceptively perturbed KGs, which maintain the downstream performance of the original KG while significantly deviating from the original KGs semantics and structure. Our findings raise doubts about KG-augmented models ability to reason about KG information and give sensible explanations.
Political polarization in the US is on the rise. This polarization negatively affects the public sphere by contributing to the creation of ideological echo chambers. In this paper, we focus on addressing one of the factors that contributes to this po larity, polarized media. We introduce a framework for depolarizing news articles. Given an article on a certain topic with a particular ideological slant (eg., liberal or conservative), the framework first detects polar language in the article and then generates a new article with the polar language replaced with neutral expressions. To detect polar words, we train a multi-attribute-aware word embedding model that is aware of ideology and topics on 360k full-length media articles. Then, for text generation, we propose a new algorithm called Text Annealing Depolarization Algorithm (TADA). TADA retrieves neutral expressions from the word embedding model that not only decrease ideological polarity but also preserve the original argument of the text, while maintaining grammatical correctness. We evaluate our framework by comparing the depolarized output of our model in two modes, fully-automatic and semi-automatic, on 99 stories spanning 11 topics. Based on feedback from 161 human testers, our framework successfully depolarized 90.1% of paragraphs in semi-automatic mode and 78.3% of paragraphs in fully-automatic mode. Furthermore, 81.2% of the testers agree that the non-polar content information is well-preserved and 79% agree that depolarization does not harm semantic correctness when they compare the original text and the depolarized text. Our work shows that data-driven methods can help to locate political polarity and aid in the depolarization of articles.
Fake news, false or misleading information presented as news, has a great impact on many aspects of society, such as politics and healthcare. To handle this emerging problem, many fake news detection methods have been proposed, applying Natural Langu age Processing (NLP) techniques on the article text. Considering that even people cannot easily distinguish fake news by news content, these text-based solutions are insufficient. To further improve fake news detection, researchers suggested graph-based solutions, utilizing the social context information such as user engagement or publishers information. However, existing graph-based methods still suffer from the following four major drawbacks: 1) expensive computational cost due to a large number of user nodes in the graph, 2) the error in sub-tasks, such as textual encoding or stance detection, 3) loss of rich social context due to homogeneous representation of news graphs, and 4) the absence of temporal information utilization. In order to overcome the aforementioned issues, we propose a novel social context aware fake news detection method, Hetero-SCAN, based on a heterogeneous graph neural network. Hetero-SCAN learns the news representation from the heterogeneous graph of news in an end-to-end manner. We demonstrate that Hetero-SCAN yields significant improvement over state-of-the-art text-based and graph-based fake news detection methods in terms of performance and efficiency.
Political stance detection has become an important task due to the increasingly polarized political ideologies. Most existing works focus on identifying perspectives in news articles or social media posts, while social entities, such as individuals a nd organizations, produce these texts and actually take stances. In this paper, we propose the novel task of entity stance prediction, which aims to predict entities stances given their social and political context. Specifically, we retrieve facts from Wikipedia about social entities regarding contemporary U.S. politics. We then annotate social entities stances towards political ideologies with the help of domain experts. After defining the task of entity stance prediction, we propose a graph-based solution, which constructs a heterogeneous information network from collected facts and adopts gated relational graph convolutional networks for representation learning. Our model is then trained with a combination of supervised, self-supervised and unsupervised loss functions, which are motivated by multiple social and political phenomenons. We conduct extensive experiments to compare our method with existing text and graph analysis baselines. Our model achieves highest stance detection accuracy and yields inspiring insights regarding social entity stances. We further conduct ablation study and parameter analysis to study the mechanism and effectiveness of our proposed approach.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا