ﻻ يوجد ملخص باللغة العربية
Political polarization in the US is on the rise. This polarization negatively affects the public sphere by contributing to the creation of ideological echo chambers. In this paper, we focus on addressing one of the factors that contributes to this polarity, polarized media. We introduce a framework for depolarizing news articles. Given an article on a certain topic with a particular ideological slant (eg., liberal or conservative), the framework first detects polar language in the article and then generates a new article with the polar language replaced with neutral expressions. To detect polar words, we train a multi-attribute-aware word embedding model that is aware of ideology and topics on 360k full-length media articles. Then, for text generation, we propose a new algorithm called Text Annealing Depolarization Algorithm (TADA). TADA retrieves neutral expressions from the word embedding model that not only decrease ideological polarity but also preserve the original argument of the text, while maintaining grammatical correctness. We evaluate our framework by comparing the depolarized output of our model in two modes, fully-automatic and semi-automatic, on 99 stories spanning 11 topics. Based on feedback from 161 human testers, our framework successfully depolarized 90.1% of paragraphs in semi-automatic mode and 78.3% of paragraphs in fully-automatic mode. Furthermore, 81.2% of the testers agree that the non-polar content information is well-preserved and 79% agree that depolarization does not harm semantic correctness when they compare the original text and the depolarized text. Our work shows that data-driven methods can help to locate political polarity and aid in the depolarization of articles.
We propose a method for online news stream clustering that is a variant of the non-parametric streaming K-means algorithm. Our model uses a combination of sparse and dense document representations, aggregates document-cluster similarity along these m
Media organizations bear great reponsibility because of their considerable influence on shaping beliefs and positions of our society. Any form of media can contain overly biased content, e.g., by reporting on political events in a selective or incomp
Online users today are exposed to misleading and propagandistic news articles and media posts on a daily basis. To counter thus, a number of approaches have been designed aiming to achieve a healthier and safer online news and media consumption. Auto
Production of news content is growing at an astonishing rate. To help manage and monitor the sheer amount of text, there is an increasing need to develop efficient methods that can provide insights into emerging content areas, and stratify unstructur
There has been significant interest recently in learning multilingual word embeddings -- in which semantically similar words across languages have similar embeddings. State-of-the-art approaches have relied on expensive labeled data, which is unavail