ﻻ يوجد ملخص باللغة العربية
A transverse mode selective laser system with gain regulation by a digital micromirror device (DMD) is presented in this letter. The gain regulation in laser medium is adjusted by the switch of the patterns loaded on DMD. Structured pump beam patterns can be obtained after the reflection of the loaded patterns on DMD, and then its defocused into a microchip laser medium by a short focal lens, so that the pump patterns can be transferred to the gain medium to regulate the gain distribution. Corresponding structured laser beams can be generated by this laser system. The laser beam pattern can be regulated easily and quickly, by switching the loaded patterns on DMD. Through this method, we show a simple and flexible laser system to generate on-demand laser beam patterns.
The wavefront measurement of a light beam is a complex task, which often requires a series of spatially resolved intensity measurements. For instance, a detector array may be used to measure the local phase gradient in the transverse plane of the unk
We derive a simple model for a two transverse mode laser (that considers the TEM00 and TEM10 modes) in which an injected signal with the shape of the TEM10 mode but a frequency close to that of the TEM00 mode is injected.
A digital micromirror device (DMD) is an amplitude-type spatial light modulator. However, a complex-amplitude light modulation with a DMD can be achieved using the superpixel scheme. In the superpixel scheme, we notice that multiple different DMD loc
Stokes polarimetry is widely used to extract the polarisation structure of optical fields, typically from six measurements, although it can be extracted from only four. To measure the required intensities, most approaches are based on optical polaris
In this paper, a modified Gerchberg Saxton algorithm for generating improved robust binary hologram is presented.