ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimizing quantum phase estimation for the simulation of Hamiltonian eigenstates

100   0   0.0 ( 0 )
 نشر من قبل Pedro Cruz
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisit quantum phase estimation algorithms for the purpose of obtaining the energy levels of many-body Hamiltonians and pay particular attention to the statistical analysis of their outputs. We introduce the mean phase direction of the parent distribution associated with eigenstate inputs as a new post-processing tool. By connecting it with the unknown phase, we find that if used as its direct estimator, it exceeds the accuracy of the standard majority rule using one less bit of resolution, making evident that it can also be inverted to provide unbiased estimation. Moreover, we show how to directly use this quantity to accurately find the energy levels when the initialized state is an eigenstate of the simulated propagator during the whole time evolution, which allows for shallower algorithms. We then use IBM Q hardware to carry out the digital quantum simulation of three toy models: a two-level system, a two-spin Ising model and a two-site Hubbard model at half-filling. Methodologies are provided to implement Trotterization and reduce the variability of results in noisy intermediate scale quantum computers.



قيم البحث

اقرأ أيضاً

In this work we present a detailed analysis of variational quantum phase estimation (VQPE), a method based on real-time evolution for ground and excited state estimation on near-term hardware. We derive the theoretical ground on which the approach st ands, and demonstrate that it provides one of the most compact variational expansions to date for solving strongly correlated Hamiltonians. At the center of VQPE lies a set of equations, with a simple geometrical interpretation, which provides conditions for the time evolution grid in order to decouple eigenstates out of the set of time evolved expansion states, and connects the method to the classical filter diagonalization algorithm. Further, we introduce what we call the unitary formulation of VQPE, in which the number of matrix elements that need to be measured scales linearly with the number of expansion states, and we provide an analysis of the effects of noise which substantially improves previous considerations. The unitary formulation allows for a direct comparison to iterative phase estimation. Our results mark VQPE as both a natural and highly efficient quantum algorithm for ground and excited state calculations of general many-body systems. We demonstrate a hardware implementation of VQPE for the transverse field Ising model. Further, we illustrate its power on a paradigmatic example of strong correlation (Cr2 in the SVP basis set), and show that it is possible to reach chemical accuracy with as few as ~50 timesteps.
The efficient validation of quantum devices is critical for emerging technological applications. In a wide class of use-cases the precise engineering of a Hamiltonian is required both for the implementation of gate-based quantum information processin g as well as for reliable quantum memories. Inferring the experimentally realized Hamiltonian through a scalable number of measurements constitutes the challenging task of Hamiltonian learning. In particular, assessing the quality of the implementation of topological codes is essential for quantum error correction. Here, we introduce a neural net based approach to this challenge. We capitalize on a family of exactly solvable models to train our algorithm and generalize to a broad class of experimentally relevant sources of errors. We discuss how our algorithm scales with system size and analyze its resilience towards various noise sources.
Gate-based quantum computers can in principle simulate the adiabatic dynamics of a large class of Hamiltonians. Here we consider the cyclic adiabatic evolution of a parameter in the Hamiltonian. We propose a quantum algorithm to estimate the Berry ph ase and use it to classify the topological order of both single-particle and interacting models, highlighting the differences between the two. This algorithm is immediately extensible to any interacting topological system. Our results evidence the potential of near-term quantum hardware for the topological classification of quantum matter.
We study how parallelism can speed up quantum simulation. A parallel quantum algorithm is proposed for simulating the dynamics of a large class of Hamiltonians with good sparse structures, called uniform-structured Hamiltonians, including various Ham iltonians of practical interest like local Hamiltonians and Pauli sums. Given the oracle access to the target sparse Hamiltonian, in both query and gate complexity, the running time of our parallel quantum simulation algorithm measured by the quantum circuit depth has a doubly (poly-)logarithmic dependence $operatorname{polylog}log(1/epsilon)$ on the simulation precision $epsilon$. This presents an exponential improvement over the dependence $operatorname{polylog}(1/epsilon)$ of previous optimal sparse Hamiltonian simulation algorithm without parallelism. To obtain this result, we introduce a novel notion of parallel quantum walk, based on Childs quantum walk. The target evolution unitary is approximated by a truncated Taylor series, which is obtained by combining these quantum walks in a parallel way. A lower bound $Omega(log log (1/epsilon))$ is established, showing that the $epsilon$-dependence of the gate depth achieved in this work cannot be significantly improved. Our algorithm is applied to simulating three physical models: the Heisenberg model, the Sachdev-Ye-Kitaev model and a quantum chemistry model in second quantization. By explicitly calculating the gate complexity for implementing the oracles, we show that on all these models, the total gate depth of our algorithm has a $operatorname{polylog}log(1/epsilon)$ dependence in the parallel setting.
We present a detailed theoretical and numerical study discussing the application and optimization of phase estimation algorithms (PEAs) to diamond spin magnetometry. We compare standard Ramsey magnetometry, the non-adaptive PEA (NAPEA) and quantum PE A (QPEA) incorporating error-checking. Our results show that the NAPEA requires lower measurement fidelity, has better dynamic range, and greater consistency in sensitivity. We elucidate the importance of dynamic range to Ramsey magnetic imaging with diamond spins, and introduce the application of PEAs to time-dependent magnetometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا