ﻻ يوجد ملخص باللغة العربية
Product formula approximations of the time-evolution operator on quantum computers are of great interest due to their simplicity, and good scaling with system size by exploiting commutativity between Hamiltonian terms. However, product formulas exhibit poor scaling with the time $t$ and error $epsilon$ of simulation as the gate cost of a single step scales exponentially with the order $m$ of accuracy. We introduce well-conditioned multiproduct formulas, which are a linear combination of product formulas, where a single step has polynomial cost $mathcal{O}(m^2log{(m)})$ and succeeds with probability $Omega(1/operatorname{log}^2{(m)})$. Our multiproduct formulas imply a simple and generic simulation algorithm that simultaneously exploits commutativity in arbitrary systems and has a worst-case cost $mathcal{O}(tlog^{2}{(t/epsilon)})$ which is optimal up to poly-logarithmic factors. In contrast, prior Trotter and post-Trotter Hamiltonian simulation algorithms realize only one of these two desirable features. A key technical result of independent interest is our solution to a conditioning problem in previous multiproduct formulas that amplified numerical errors by $e^{Omega(m)}$ in the classical setting, and led to a vanishing success probability $e^{-Omega(m)}$ in the quantum setting.
Quantum computing can efficiently simulate Hamiltonian dynamics of many-body quantum physics, a task that is generally intractable with classical computers. The hardness lies at the ubiquitous anti-commutative relations of quantum operators, in corre
Hamiltonian simulation is one of the most important problems in quantum computation, and quantum singular value transformation (QSVT) is an efficient way to simulate a general class of Hamiltonians. However, the QSVT circuit typically involves multip
We study how parallelism can speed up quantum simulation. A parallel quantum algorithm is proposed for simulating the dynamics of a large class of Hamiltonians with good sparse structures, called uniform-structured Hamiltonians, including various Ham
The evaluation of the performance of adiabatic annealers is hindered by lack of efficient algorithms for simulating their behaviour. We exploit the analyticity of the standard model for the adiabatic quantum process to develop an efficient recursive
We use discrete-event simulation on a digital computer to study two different models of experimentally realizable quantum walks. The simulation models comply with Einstein locality, are as realistic as the one of the simple random walk in that the pa