ﻻ يوجد ملخص باللغة العربية
In this paper, we explore possibilities to utilize harmonic analysis on $mathrm{GL}_1$ to understand Langlands automorphic $L$-functions in general, as a vast generalization of the pioneering work of J. Tate (cite{Tt50}). For a split reductive group $G$ over a number field $k$, let $G^vee(mathbb{C})$ be its complex dual group and $rho$ be an $n$-dimensional complex representation of $G^vee(mathbb{C})$. For any irreducible cuspidal automorphic representation $sigma$ of $G(mathbb{A})$, where $mathbb{A}$ is the ring of adeles of $k$, we introduce the space $mathcal{S}_{sigma,rho}(mathbb{A}^times)$ of $(sigma,rho)$-Schwartz functions on $mathbb{A}^times$ and $(sigma,rho)$-Fourier operator $mathcal{F}_{sigma,rho,psi}$ that takes $mathcal{S}_{sigma,rho}(mathbb{A}^times)$ to $mathcal{S}_{widetilde{sigma},rho}(mathbb{A}^times)$, where $widetilde{sigma}$ is the contragredient of $sigma$. By assuming the local Langlands functoriality for the pair $(G,rho)$, we show that the $(sigma,rho)$-theta functions [ Theta_{sigma,rho}(x,phi):=sum_{alphain k^times}phi(alpha x) ] converges absolutely for all $phiinmathcal{S}_{sigma,rho}(mathbb{A}^times)$, and state conjectures on $(sigma,rho)$-Poisson summation formula on $mathrm{GL}_1$. One of the main results in this paper is to prove the conjectures when $G=mathrm{GL}_n$ and $rho$ is the standard representation of $mathrm{GL}_n(mathbb{C})$. The proof uses substantially the local theory of Godement-Jacquet (cite{GJ72}) for the standard $L$-functions of $mathrm{GL}_n$ and the Poisson summation formula for the classical Fourier transform on affine spaces.
For a split reductive group $G$ over a number field $k$, let $rho$ be an $n$-dimensional complex representation of its complex dual group $G^vee(mathbb{C})$. For any irreducible cuspidal automorphic representation $sigma$ of $G(mathbb{A})$, where $ma
Following the paradigm of cite{MR3117742}, we are going to explore the stable transfer factors for $mathrm{Sym}^{n}$ lifting from $mathrm{GL}_{2}$ to $mathrm{GL}_{n+1}$ over any local fields $F$ of characteristic zero with residue characteristic not
Let $mathsf k$ be a local field. Let $I_ u$ and $I_{ u}$ be smooth principal series representations of $mathrm{GL}_n(mathsf k)$ and $mathrm{GL}_{n-1}(mathsf k)$ respectively. The Rankin-Selberg integrals yield a continuous bilinear map $I_ utimes I_{
Let $F$ be a quadratic extension of $mathbb{Q}_p$. We prove that smooth irreducible supersingular representations with central character of $mathrm{GL}_2(F)$ are not of finite presentation.
The standard $L$-functions of $mathrm{GL}_{2n}$ expressed in terms of the Friedberg-Jacquet global zeta integrals have better structure for arithmetic applications, due to the relation of the linear periods with the modular symbols. The most technica