ﻻ يوجد ملخص باللغة العربية
Following the paradigm of cite{MR3117742}, we are going to explore the stable transfer factors for $mathrm{Sym}^{n}$ lifting from $mathrm{GL}_{2}$ to $mathrm{GL}_{n+1}$ over any local fields $F$ of characteristic zero with residue characteristic not equal to $2$. When $F=mathbb{C}$ we construct an explicit stable transfer factor for any $n$. When $n$ is odd, we provide a reduction formula, reducing the question to the construction of the stable transfer factors when the $L$-morphism is the diagonal embedding from $mathrm{GL}_{2}(mathbb{C})$ to finitely many copies of $mathrm{GL}_{2}(mathbb{C})$ under mild assumptions on the residue characteristic of $F$. With the assumptions on the residue characteristic, the reduction formula works uniformly over any local fields of characteristic zero, except that for $p$-adic situation we need to exclude the twisted Steinberg representations.
Let $mathsf k$ be a local field. Let $I_ u$ and $I_{ u}$ be smooth principal series representations of $mathrm{GL}_n(mathsf k)$ and $mathrm{GL}_{n-1}(mathsf k)$ respectively. The Rankin-Selberg integrals yield a continuous bilinear map $I_ utimes I_{
Let $W_{m|n}$ be the (finite) $W$-algebra attached to the principal nilpotent orbit in the general linear Lie superalgebra $mathfrak{gl}_{m|n}(mathbb{C})$. In this paper we study the {em Whittaker coinvariants functor}, which is an exact functor from
For a split reductive group $G$ over a number field $k$, let $rho$ be an $n$-dimensional complex representation of its complex dual group $G^vee(mathbb{C})$. For any irreducible cuspidal automorphic representation $sigma$ of $G(mathbb{A})$, where $ma
In this paper, we explore possibilities to utilize harmonic analysis on $mathrm{GL}_1$ to understand Langlands automorphic $L$-functions in general, as a vast generalization of the pioneering work of J. Tate (cite{Tt50}). For a split reductive group
Let $F$ be a quadratic extension of $mathbb{Q}_p$. We prove that smooth irreducible supersingular representations with central character of $mathrm{GL}_2(F)$ are not of finite presentation.