ﻻ يوجد ملخص باللغة العربية
The standard $L$-functions of $mathrm{GL}_{2n}$ expressed in terms of the Friedberg-Jacquet global zeta integrals have better structure for arithmetic applications, due to the relation of the linear periods with the modular symbols. The most technical obstacles towards such arithmetic applications are (1) non-vanishing of modular symbols at infinity and (2) the existance or construction of uniform cohomological test vectors. Problem (1) is also called the non-vanishing hypothesis at infinity, which was proved by Binyong Sun, by establishing the existence of certain cohomological test vectors. In this paper, we explicitly construct an archimedean local integral that produces a new type of a twisted linear functional $Lambda_{s,chi}$, which, when evaluated with our explicitly constructed cohomological vector, is equal to the local twisted standard $L$-function $L(s,piotimeschi)$ as a meromorphic function of $sin mathbb{C}$. With the relations between linear models and Shalika models, we establish (1) with an explicitly constructed cohomological vector, and hence recovers a non-vanishing result of Binyong Sun via a completely different method. Our main result indicates a complete solution to (2), which will be presented in a paper of Dihua Jiang, Binyong Sun and Fangyang Tian with full details and with applications to the global period relations for the twisted standard $L$-functions at critical places.
The purpose of this paper is to study the local zeta integrals of Friedberg-Jacquet at complex place and to establish similar results to our recent work in the reall case joint with C. Cheng and D. Jiang. In this paper, we will (1) give a necessary a
For a split reductive group $G$ over a number field $k$, let $rho$ be an $n$-dimensional complex representation of its complex dual group $G^vee(mathbb{C})$. For any irreducible cuspidal automorphic representation $sigma$ of $G(mathbb{A})$, where $ma
Following the paradigm of cite{MR3117742}, we are going to explore the stable transfer factors for $mathrm{Sym}^{n}$ lifting from $mathrm{GL}_{2}$ to $mathrm{GL}_{n+1}$ over any local fields $F$ of characteristic zero with residue characteristic not
We study simultaneous non-vanishing of $L(tfrac{1}{2},di)$ and $L(tfrac{1}{2},gotimes di)$, when $di$ runs over an orthogonal basis of the space of Hecke-Maass cusp forms for $SL(3,mathbb{Z})$ and $g$ is a fixed $SL(2,mathbb{Z})$ Hecke cusp form of weight $kequiv 0 pmod 4$.
In this paper, we explore possibilities to utilize harmonic analysis on $mathrm{GL}_1$ to understand Langlands automorphic $L$-functions in general, as a vast generalization of the pioneering work of J. Tate (cite{Tt50}). For a split reductive group