ترغب بنشر مسار تعليمي؟ اضغط هنا

Diagonal cubic forms and the large sieve

88   0   0.0 ( 0 )
 نشر من قبل Victor Y. Wang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Victor Y. Wang




اسأل ChatGPT حول البحث

Let $F(boldsymbol{x})$ be a diagonal integer-coefficient cubic form in $min{4,5,6}$ variables. Excluding rational lines if $m=4$, we bound the number of integral solutions $boldsymbol{x}in[-X,X]^m$ to $F(boldsymbol{x})=0$ by $O_{F,epsilon}(X^{3m/4 - 3/2 + epsilon})$, conditionally on an optimal large sieve inequality (in a specific range of parameters) for approximate Hasse-Weil $L$-functions of smooth hyperplane sections $F(boldsymbol{x})=boldsymbol{c}cdotboldsymbol{x}=0$ as $boldsymbol{c}inmathbb{Z}^m$ varies in natural boxes. When $m$ is even, these results were previously established conditionally under Hooleys Hypothesis HW. Our $ell^2$ large sieve approach requires that certain bad factors be roughly $1$ on average in $ell^2$, while the $ell^infty$ Hypothesis HW approach only required the bound in $ell^1$. Furthermore, the large sieve only accepts uniform vectors; yet our initially given vectors are only approximately uniform over $boldsymbol{c}$, due to variation in bad factors and in the archimedean component. Nonetheless, after some bookkeeping, partial summation, and Cauchy, the large sieve will still apply. In an appendix, we suggest a framework for non-diagonal cubics, up to Hessian issues.



قيم البحث

اقرأ أيضاً

Let ${mathbb F}_q$ be the finite field with $q=p^k$ elements with $p$ being a prime and $k$ be a positive integer. For any $y, zinmathbb{F}_q$, let $N_s(z)$ and $T_s(y)$ denote the numbers of zeros of $x_1^{3}+cdots+x_s^3=z$ and $x_1^3+cdots+x_{s-1}^ 3+yx_s^3=0$, respectively. Gauss proved that if $q=p, pequiv1pmod3$ and $y$ is non-cubic, then $T_3(y)=p^2+frac{1}{2}(p-1)(-c+9d)$, where $c$ and $d$ are uniquely determined by $4p=c^2+27d^2,~cequiv 1 pmod 3$ except for the sign of $d$. In 1978, Chowla, Cowles and Cowles determined the sign of $d$ for the case of $2$ being a non-cubic element of ${mathbb F}_p$. But the sign problem is kept open for the remaining case of $2$ being cubic in ${mathbb F}_p$. In this paper, we solve this sign problem by determining the sign of $d$ when $2$ is cubic in ${mathbb F}_p$. Furthermore, we show that the generating functions $sum_{s=1}^{infty} N_{s}(z) x^{s}$ and $sum_{s=1}^{infty} T_{s}(y)x^{s}$ are rational functions for any $z, yinmathbb F_q^*:=mathbb F_qsetminus {0}$ with $y$ being non-cubic over ${mathbb F}_q$ and also give their explicit expressions. This extends the theorem of Myerson and that of Chowla, Cowles and Cowles.
We present a method for tabulating all cubic function fields over $mathbb{F}_q(t)$ whose discriminant $D$ has either odd degree or even degree and the leading coefficient of $-3D$ is a non-square in $mathbb{F}_{q}^*$, up to a given bound $B$ on the d egree of $D$. Our method is based on a generalization of Belabas method for tabulating cubic number fields. The main theoretical ingredient is a generalization of a theorem of Davenport and Heilbronn to cubic function fields, along with a reduction theory for binary cubic forms that provides an efficient way to compute equivalence classes of binary cubic forms. The algorithm requires $O(B^4 q^B)$ field operations as $B rightarrow infty$. The algorithm, examples and numerical data for $q=5,7,11,13$ are included.
54 - Matthew P. Young 2021
We prove an improved spectral large sieve inequality for the family of $SL_3(mathbb{Z})$ Hecke-Maass cusp forms. The method of proof uses duality and its structure reveals unexpected connections to Heath-Browns large sieve for cubic characters.
Let $mathbb{F}_q$ be the finite field of $q=p^mequiv 1pmod 4$ elements with $p$ being an odd prime and $m$ being a positive integer. For $c, y inmathbb{F}_q$ with $yinmathbb{F}_q^*$ non-quartic, let $N_n(c)$ and $M_n(y)$ be the numbers of zeros of $x _1^4+...+x_n^4=c$ and $x_1^4+...+x_{n-1}^4+yx_n^4=0$, respectively. In 1979, Myerson used Gauss sum and exponential sum to show that the generating function $sum_{n=1}^{infty}N_n(0)x^n$ is a rational function in $x$ and presented its explicit expression. In this paper, we make use of the cyclotomic theory and exponential sums to show that the generating functions $sum_{n=1}^{infty}N_n(c)x^n$ and $sum_{n=1}^{infty}M_{n+1}(y)x^n$ are rational functions in $x$. We also obtain the explicit expressions of these generating functions. Our result extends Myersons theorem gotten in 1979.
147 - Holger Then 2012
We explore an algorithm which systematically finds all discrete eigenvalues of an analytic eigenvalue problem. The algorithm is more simple and elementary as could be expected before. It consists of Hejhals identity, linearisation, and Turing bounds. Using the algorithm, we compute more than one hundredsixty thousand consecutive eigenvalues of the Laplacian on the modular surface, and investigate the asymptotic and statistic properties of the fluctuations in the Weyl remainder. We summarize the findings in two conjectures. One is on the maximum size of the Weyl remainder, and the other is on the distribution of a suitably scaled version of the Weyl remainder.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا