ﻻ يوجد ملخص باللغة العربية
We explore an algorithm which systematically finds all discrete eigenvalues of an analytic eigenvalue problem. The algorithm is more simple and elementary as could be expected before. It consists of Hejhals identity, linearisation, and Turing bounds. Using the algorithm, we compute more than one hundredsixty thousand consecutive eigenvalues of the Laplacian on the modular surface, and investigate the asymptotic and statistic properties of the fluctuations in the Weyl remainder. We summarize the findings in two conjectures. One is on the maximum size of the Weyl remainder, and the other is on the distribution of a suitably scaled version of the Weyl remainder.
In this paper we study, both analytically and numerically, questions involving the distribution of eigenvalues of Maass forms on the moonshine groups $Gamma_0(N)^+$, where $N>1$ is a square-free integer. After we prove that $Gamma_0(N)^+$ has one cus
Let $q:=e^{2 pi iz}$, where $z in mathbb{H}$. For an even integer $k$, let $f(z):=q^hprod_{m=1}^{infty}(1-q^m)^{c(m)}$ be a meromorphic modular form of weight $k$ on $Gamma_0(N)$. For a positive integer $m$, let $T_m$ be the $m$th Hecke operator and
In this paper, we explicitly construct harmonic Maass forms that map to the weight one theta series associated by Hecke to odd ray class group characters of real quadratic fields. From this construction, we give precise arithmetic information contain
Let tau(.) be the Ramanujan tau-function, and let k be a positive integer such that tau(n) is not 0 for n=1,...,[k/2]. (This is known to be true for k < 10^{23}, and, conjecturally, for all k.) Further, let s be a permutation of the set {1,...,k}. Th
We introduce an L-series associated with harmonic Maass forms and prove their functional equations. We establish converse theorems for these L-series and, as an application, we formulate and prove a summation formula for the holomorphic part of a harmonic lift of a given cusp form.