ترغب بنشر مسار تعليمي؟ اضغط هنا

Tabulation of cubic function fields via polynomial binary cubic forms

118   0   0.0 ( 0 )
 نشر من قبل Pieter Rozenhart
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a method for tabulating all cubic function fields over $mathbb{F}_q(t)$ whose discriminant $D$ has either odd degree or even degree and the leading coefficient of $-3D$ is a non-square in $mathbb{F}_{q}^*$, up to a given bound $B$ on the degree of $D$. Our method is based on a generalization of Belabas method for tabulating cubic number fields. The main theoretical ingredient is a generalization of a theorem of Davenport and Heilbronn to cubic function fields, along with a reduction theory for binary cubic forms that provides an efficient way to compute equivalence classes of binary cubic forms. The algorithm requires $O(B^4 q^B)$ field operations as $B rightarrow infty$. The algorithm, examples and numerical data for $q=5,7,11,13$ are included.



قيم البحث

اقرأ أيضاً

This paper presents an algorithm for generating all imaginary and unusual discriminants up to a fixed degree bound that define a quadratic function field of positive 3-rank. Our method makes use of function field adaptations of a method due to Belaba s for finding quadratic number fields of high 3-rank and of a refined function field version of a theorem due to Hasse. We provide numerical data for discriminant degree up to 11 over the finite fields $mathbb{F}_{5}, mathbb{F}_{7}, mathbb{F}_{11}$ and $mathbb{F}_{13}$. A special feature of our technique is that it produces quadratic function fields of minimal genus for any given 3-rank. Taking advantage of certain $mathbb{F}_{q}(t)$-automorphisms in conjunction with Horners rule for evaluating polynomials significantly speeds up our algorithm in the imaginary case; this improvement is unique to function fields and does not apply to number field tabulation. These automorphisms also account for certain divisibility properties in the number of fields found with positive 3-rank. Our numerical data mostly agrees with the predicted heuristics of Friedman-Washington and partial results on the distribution of such values due to Ellenberg-Venkatesh-Westerland for quadratic function fields over the finite field $finfldq{q}$ where $q equiv -1 pmod{3}$. The corresponding data for $q equiv 1 pmod{3}$ does not agree closely with the previously mentioned heuristics and results, but does agree more closely with some recent number field conjectures of Malle and some work in progress on proving such conjectures for function fields due to Garton.
134 - Zhishan Yang 2015
For a cubic algebraic extension $K$ of $mathbb{Q}$, the behavior of the ideal counting function is considered in this paper. Let $a_{K}(n)$ be the number of integral ideals of the field $K$ with norm $n$. An asymptotic formula is given for the sum $$ sumlimits_{n_{1}^2+n_{2}^2leq x}a_{K}(n_{1}^2+n_{2}^2). $$
In this paper, we study simple cubic fields in the function field setting, and also generalize the notion of a set of exceptional units to cubic function fields, namely the notion of $k$-exceptional units. We give a simple proof that the Galois simpl e cubic function fields are the immediate analog of Shanks simplest cubic number fields. In addition to computing the invariants, including a formula for the regulator, we compute the class numbers of the Galois simple cubic function fields over $mathbb{F}_{5}$ and $mathbb{F}_{7}$ using truncated Euler products. Finally, as an additional application, we determine all Galois simple cubic function fields with class number one, subject to a mild restriction.
133 - Q. Mushtaq , S. Iqbal 2010
Let $Q(alpha)$ be the simplest cubic field, it is known that $Q(alpha)$ can be generated by adjoining a root of the irreducible equation $x^{3}-kx^{2}+(k-3)x+1=0$, where $k$ belongs to $Q$. In this paper we have established a relationship between $al pha$, $alpha$ and $k,k$ where $alpha$ is a root of the equation $x^{3}-kx^{2}+(k-3)x+1=0$ and $alpha$ is a root of the same equation with $k$ replaced by $k$ and $Q(alpha)=Q(alpha)$.
Let ${mathbb F}_q$ be the finite field with $q=p^k$ elements with $p$ being a prime and $k$ be a positive integer. For any $y, zinmathbb{F}_q$, let $N_s(z)$ and $T_s(y)$ denote the numbers of zeros of $x_1^{3}+cdots+x_s^3=z$ and $x_1^3+cdots+x_{s-1}^ 3+yx_s^3=0$, respectively. Gauss proved that if $q=p, pequiv1pmod3$ and $y$ is non-cubic, then $T_3(y)=p^2+frac{1}{2}(p-1)(-c+9d)$, where $c$ and $d$ are uniquely determined by $4p=c^2+27d^2,~cequiv 1 pmod 3$ except for the sign of $d$. In 1978, Chowla, Cowles and Cowles determined the sign of $d$ for the case of $2$ being a non-cubic element of ${mathbb F}_p$. But the sign problem is kept open for the remaining case of $2$ being cubic in ${mathbb F}_p$. In this paper, we solve this sign problem by determining the sign of $d$ when $2$ is cubic in ${mathbb F}_p$. Furthermore, we show that the generating functions $sum_{s=1}^{infty} N_{s}(z) x^{s}$ and $sum_{s=1}^{infty} T_{s}(y)x^{s}$ are rational functions for any $z, yinmathbb F_q^*:=mathbb F_qsetminus {0}$ with $y$ being non-cubic over ${mathbb F}_q$ and also give their explicit expressions. This extends the theorem of Myerson and that of Chowla, Cowles and Cowles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا