ﻻ يوجد ملخص باللغة العربية
In this note, we study the nonexpansive properties based on arbitrary variable metric and explore the connections between firm nonexpansiveness, cocoerciveness and averagedness. A convergence rate analysis for the associated fixed-point iterations is presented by developing the global ergodic and non-ergodic iteration-complexity bounds in terms of metric distances. The obtained results are finally exemplified with the metric resolvent, which provides a unified framework for many existing first-order operator splitting algorithms.
In this paper we present a systematic study of regular sequences of quasi-nonexpansive operators in Hilbert space. We are interested, in particular, in weakly, boundedly and linearly regular sequences of operators. We show that the type of the regula
We estimate convergence rates for fixed-point iterations of a class of nonlinear operators which are partially motivated from solving convex optimization problems. We introduce the notion of the generalized averaged nonexpansive (GAN) operator with a
We show that the deficiency indices of the minimal Gaffney Laplacian on an infinite locally finite metric graph are equal to the number of finite volume graph ends. Moreover, we provide criteria, formulated in terms of finite volume graph ends, for the Gaffney Laplacian to be closed.
We study timelike and null geodesics in a non-singular black hole metric proposed by Hayward. The metric contains an additional length-scale parameter $ell$ and approaches the Schwarzschild metric at large radii while approaches a constant at small r
A possible form of the Lipkin model obeying the su(6)-algebra is presented. It is a natural generalization from the idea for the su(4)-algebra recently proposed by the present authors. All the relation appearing in the present form can be expressed i