ﻻ يوجد ملخص باللغة العربية
A possible form of the Lipkin model obeying the su(6)-algebra is presented. It is a natural generalization from the idea for the su(4)-algebra recently proposed by the present authors. All the relation appearing in the present form can be expressed in terms of the spherical tensors in the su(2)-algebras. For specifying the linearly independent basis completely, twenty parameters are introduced. It is concluded that, in these parameters, the ten denote the quantum numbers coming from the eigenvalues of some hermitian operators. The five in these ten determine the minimum weight state.
With the aim of performing an argument supplement to the previous paper by the present authors, in this paper, a practical scheme for constructing the minimum weight states of the su(n)-Lipkin model in arbitrary fermion number is discussed. The idea
Standing on the results for the minimum weight states obtained in the previous paper (I), an idea how to construct the linearly independent basis is proposed for the su(n)-Lipkin model. This idea starts in setting up m independent su(2)-subalgebras i
The minimum weight states of the Lipkin model consisting of n single-particle levels and obeying the su(n)-algebra are investigated systematically. The basic idea is to use the su(2)-algebra which is independent of the su(n)-algebra. This idea has be
On the basis of the formalism proposed by three of the present authors (A.K., J.P.and M.Y.), generalized Lipkin model consisting of (M+1) single-particle levels is investigated. This model is essentially a kind of the su(M+1)-algebraic model and, in
We investigate the applicability of finite temperature random phase approximation (RPA) using a solvable Lipkin model. We show that the finite temperature RPA reproduces reasonably well the temperature dependence of total strength, both for the posit