ﻻ يوجد ملخص باللغة العربية
We study timelike and null geodesics in a non-singular black hole metric proposed by Hayward. The metric contains an additional length-scale parameter $ell$ and approaches the Schwarzschild metric at large radii while approaches a constant at small radii so that the singularity is resolved. We tabulate the various critical values of $ell$ for timelike and null geodesics: the critical values for the existence of horizon, marginally stable circular orbit and photon sphere. We find the photon sphere exists even if the horizon is absent and two marginally stable circular orbits appear if the photon sphere is absent and a stable circular orbit for photons exists for a certain range of $ell$. We visualize the image of a black hole and find that blight rings appear even if the photon sphere is absent.
It is shown that the free motion of massive particles moving in static spacetimes are given by the geodesics of an energy-dependent Riemannian metric on the spatial sections analogous to Jacobis metric in classical dynamics. In the massless limit Jac
Basing on the ideas used by Kiselev, we study the Hayward black hole surrounded by quintessence. By setting for the quintessence state parameter at the special case of $omega=-frac{2}{3}$, using the metric of the black hole surrounded by quintessence
In this article, we explore the geodesics motion of neutral test particles and the process of energy extraction from a regular rotating Hayward black hole. We analyse the effect of spin, as well as deviation parameter g, on ergoregion, event horizon
In this paper we investigate the equilibrium self-gravitating radiation in higher dimensional, plane symmetric anti-de Sitter space. We find that there exist essential differences from the spherically symmetric case: In each dimension ($dgeq 4$), the
The paper has been withdrawn by the author.