ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of Orbital Configurations for Millimetron Space Observatory

109   0   0.0 ( 0 )
 نشر من قبل Alexey Rudnitskiy
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this contribution a primary feasibility study of different orbital configurations for Millimetron space observatory is presented. Priority factors and limitations were considered by which it is possible to assess the capabilities of a particular orbit. It included technical and scientific capabilities of each orbit regarding the fuel costs, satellite observability, the quality of very long baseline interferometric (VLBI) imaging observations and source visibilities.

قيم البحث

اقرأ أيضاً

This paper describes outstanding issues in astrophysics and cosmology that can be solved by astronomical observations in a broad spectral range from far infrared to millimeter wavelengths. The discussed problems related to the formation of stars and planets, galaxies and the interstellar medium, studies of black holes and the development of the cosmological model can be addressed by the planned space observatory Millimetron (the Spectr-M project) equipped with a cooled 10-m mirror. Millimetron can operate both as a single-dish telescope and as a part of a space-ground interferometer with very long baseline.
High resolution imaging of supermassive black holes shadows is a direct way to verify the theory of general relativity at extreme gravity conditions. Very Long Baseline Interferometry (VLBI) observations at millimeter/sub-millimeter wavelengths can p rovide such angular resolution for supermassive black holes, located in Sgr A* and M87. Recent VLBI observations of M87 with the Event Horizon Telescope (EHT) has shown such capabilities. The maximum obtainable spatial resolution of EHT is limited by Earth diameter and atmospheric phase variations. In order to improve the image resolution longer baselines are required. Radioastron space mission has successfully demonstrated the capabilities of Space-Earth VLBI with baselines much larger than Earth diameter. Millimetron is a next space mission of the Russian Space Agency that will operate at millimeter wavelengths. Nominal orbit of the observatory will be located around Lagrangian L2 point of the Sun-Earth system. In order to optimize the VLBI mode, we consider a possible second stage of the mission that could use near-Earth high elliptical orbit (HEO). In this contribution a set of near-Earth orbits is used for the synthetic space-ground VLBI observations of Sgr A* and M87 in joint Millimetron and EHT configuration. General-relativistic magnetohydrodynamic models (GRMHD) for black hole environment of Sgr A* and M87 are used for static and dynamic imaging simulations at 230 GHz. A comparison preformed between ground and space-ground baselines demonstrates that joint observations with Millimetron and EHT significantly improve the image resolution and allow the EHT+Millimetron to obtain snapshot images of Sgr A* probing dynamics at fast timescales.
Herschel was launched on 14 May 2009, and is now an operational ESA space observatory offering unprecedented observational capabilities in the far-infrared and submillimetre spectral range 55-671 {mu}m. Herschel carries a 3.5 metre diameter passively cooled Cassegrain telescope, which is the largest of its kind and utilises a novel silicon carbide technology. The science payload comprises three instruments: two direct detection cameras/medium resolution spectrometers, PACS and SPIRE, and a very high-resolution heterodyne spectrometer, HIFI, whose focal plane units are housed inside a superfluid helium cryostat. Herschel is an observatory facility operated in partnership among ESA, the instrument consortia, and NASA. The mission lifetime is determined by the cryostat hold time. Nominally approximately 20,000 hours will be available for astronomy, 32% is guaranteed time and the remainder is open to the worldwide general astronomical community through a standard competitive proposal procedure.
A wide range of data formats and proprietary software have traditionally been used in gamma-ray astronomy, usually developed for a single specific mission or experiment. However, in recent years there has been an increasing effort towards making astr onomical data open and easily accessible. Within the gamma-ray community this has translated to the creation of a common data format across different gamma-ray observatories: the gamma-astro-data-format (GADF). Based on a similar premise, open-source analysis packages, such as Gammapy, are being developed and aim to provide a single, robust tool which suits the needs of many experiments at once. In this contribution we show that data from the High-Altitude Water Cherenkov (HAWC) observatory can be made compatible with the GADF and present the first GADF-based production of event lists and instrument response functions for a ground-based wide-field instrument. We use these data products to reproduce with excellent agreement the published HAWC Crab spectrum using Gammapy. Having a common data format and analysis tools facilitates joint analysis between different experiments and effective data sharing. This will be especially important for next-generation instruments, such as the proposed Southern Wide-field Gamma-ray Observatory (SWGO) and the planned Cherenkov Telescope Array (CTA).
In this white paper, we discuss the concept of a next-generation X-ray mission called BEST (Black hole Evolution and Space Time). The mission concept uses a 3000 square centimeter effective area mirror (at 6 keV) to achieve unprecedented sensitivitie s for hard X-ray imaging spectrometry (5-70 keV) and for broadband X-ray polarimetry (2-70 keV). BEST can make substantial contributions to our understanding of the inner workings of accreting black holes, our knowledge about the fabric of extremely curved spacetime, and the evolution of supermassive black holes. BEST will allow for time resolved studies of accretion disks. With a more than seven times larger mirror area and a seven times wider bandpass than GEMS, BEST will take X-ray polarimetry to a new level: it will probe the time variability of the X-ray polarization from stellar mass and supermassive black holes, and it will measure the polarization properties in 30 independent energy bins. These capabilities will allow BEST to conduct tests of accretion disk models and the underlying spacetimes. With three times larger mirror area and ten times better angular resolution than NuSTAR, BEST will be able to make deep field observations with a more than 15 times better sensitivity than NuSTAR. The mission will be able to trace the evolution of obscured and unobscured black holes in the redshift range from zero to six, covering the most important epoch of supermassive black hole growth. The hard X-ray sensitivity of BEST will enable a deep census of non-thermal particle populations. BEST will give us insights into AGN feedback by measuring the particle luminosity injected by AGNs into the interstellar medium (ISM) of their hosts, and will map the emission from particles accelerated at large scale structure shocks. Finally, BEST has the potential to constrain the equation of state of neutron stars (NS).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا