ترغب بنشر مسار تعليمي؟ اضغط هنا

Lossless Multi-Scale Constitutive Elastic Relations with Artificial Intelligence

60   0   0.0 ( 0 )
 نشر من قبل Jaber Rezaei Mianroodi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The elastic properties of materials derive from their electronic and atomic nature. However, simulating bulk materials fully at these scales is not feasible, so that typically homogenized continuum descriptions are used instead. A seamless and lossless transition of the constitutive description of the elastic response of materials between these two scales has been so far elusive. Here we show how this problem can be overcome by using Artificial Intelligence (AI). A Convolutional Neural Network (CNN) model is trained, by taking the structure image of a nanoporous material as input and the corresponding elasticity tensor, calculated from Molecular Statics (MS), as output. Trained with the atomistic data, the CNN model captures the size- and pore-dependency of the materials elastic properties which, on the physics side, can stem from surfaces and non-local effects. Such effects are often ignored in upscaling from atomistic to classical continuum theory. To demonstrate the accuracy and the efficiency of the trained CNN model, a Finite Element Method (FEM) based result of an elastically deformed nanoporous beam equipped with the CNN as constitutive law is compared with that by a full atomistic simulation. The good agreement between the atomistic simulations and the FEM-AI combination for a system with size and surface effects establishes a new lossless scale bridging approach to such problems. The trained CNN model deviates from the atomistic result by 9.6% for porosity scenarios of up to 90% but it is about 230 times faster than the MS calculation and does not require to change simulation methods between different scales. The efficiency of the CNN evaluation together with the preservation of important atomistic effects makes the trained model an effective atomistically-informed constitutive model for macroscopic simulations of nanoporous materials and solving of inverse problems.



قيم البحث

اقرأ أيضاً

X-ray Computed Tomography (X-ray CT) is a well-known non-destructive imaging technique where contrast originates from the materials absorption coefficients. Novel battery characterization studies on increasingly challenging samples have been enabled by the rapid development of both synchrotron and laboratory-scale imaging systems as well as innovative analysis techniques. Furthermore, the recent development of laboratory nano-scale CT (NanoCT) systems has pushed the limits of battery material imaging towards voxel sizes previously achievable only using synchrotron facilities. Such systems are now able to reach spatial resolutions down to 50 nm. Given the non-destructive nature of CT, in-situ and operando studies have emerged as powerful methods to quantify morphological parameters, such as tortuosity factor, porosity, surface area, and volume expansion during battery operation or cycling. Combined with powerful Artificial Intelligence (AI)/Machine Learning (ML) analysis techniques, extracted 3D tomograms and battery-specific morphological parameters enable the development of predictive physics-based models that can provide valuable insights for battery engineering. These models can predict the impact of the electrode microstructure on cell performances or analyze the influence of material heterogeneities on electrochemical responses. In this work, we review the increasing role of X-ray CT experimentation in the battery field, discuss the incorporation of AI/ML in analysis, and provide a perspective on how the combination of multi-scale CT imaging techniques can expand the development of predictive multiscale battery behavioral models.
We use a generic formalism designed to search for relations in high-dimensional spaces to determine if the total mass of a subhalo can be predicted from other internal properties such as velocity dispersion, radius, or star-formation rate. We train n eural networks using data from the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project and show that the model can predict the total mass of a subhalo with high accuracy: more than 99% of the subhalos have a predicted mass within 0.2 dex of their true value. The networks exhibit surprising extrapolation properties, being able to accurately predict the total mass of any type of subhalo containing any kind of galaxy at any redshift from simulations with different cosmologies, astrophysics models, subgrid physics, volumes, and resolutions, indicating that the network may have found a universal relation. We then use different methods to find equations that approximate the relation found by the networks and derive new analytic expressions that predict the total mass of a subhalo from its radius, velocity dispersion, and maximum circular velocity. We show that in some regimes, the analytic expressions are more accurate than the neural networks. We interpret the relation found by the neural network and approximated by the analytic equation as being connected to the virial theorem.
Optical and optoelectronic approaches of performing matrix-vector multiplication (MVM) operations have shown the great promise of accelerating machine learning (ML) algorithms with unprecedented performance. The incorporation of nanomaterials into th e system can further improve the performance thanks to their extraordinary properties, but the non-uniformity and variation of nanostructures in the macroscopic scale pose severe limitations for large-scale hardware deployment. Here, we report a new optoelectronic architecture consisting of spatial light modulators and photodetector arrays made from graphene to perform MVM. The ultrahigh carrier mobility of graphene, nearly-zero-power-consumption electro-optic control, and extreme parallelism suggest ultrahigh data throughput and ultralow-power consumption. Moreover, we develop a methodology of performing accurate calculations with imperfect components, laying the foundation for scalable systems. Finally, we perform a few representative ML algorithms, including singular value decomposition, support vector machine, and deep neural networks, to show the versatility and generality of our platform.
Lossless image compression is an important technique for image storage and transmission when information loss is not allowed. With the fast development of deep learning techniques, deep neural networks have been used in this field to achieve a higher compression rate. Methods based on pixel-wise autoregressive statistical models have shown good performance. However, the sequential processing way prevents these methods to be used in practice. Recently, multi-scale autoregressive models have been proposed to address this limitation. Multi-scale approaches can use parallel computing systems efficiently and build practical systems. Nevertheless, these approaches sacrifice compression performance in exchange for speed. In this paper, we propose a multi-scale progressive statistical model that takes advantage of the pixel-wise approach and the multi-scale approach. We developed a flexible mechanism where the processing order of the pixels can be adjusted easily. Our proposed method outperforms the state-of-the-art lossless image compression methods on two large benchmark datasets by a significant margin without degrading the inference speed dramatically.
Heterogeneous catalysis is an example of a complex materials function, governed by an intricate interplay of several processes, e.g., the different surface chemical reactions, and the dynamic re-structuring of the catalyst material at reaction condit ions. Modelling the full catalytic progression via first-principles statistical mechanics is impractical, if not impossible. Instead, we show here how a tailored artificial-intelligence approach can be applied, even to a small number of materials, to model catalysis and determine the key descriptive parameters (materials genes) reflecting the processes that trigger, facilitate, or hinder catalyst performance. We start from a consistent experimental set of clean data, containing nine vanadium-based oxidation catalysts. These materials were synthesized, fully characterized, and tested according to standardized protocols. By applying the symbolic-regression SISSO approach, we identify correlations between the few most relevant materials properties and their reactivity. This approach highlights the underlying physicochemical processes, and accelerates catalyst design.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا