ترغب بنشر مسار تعليمي؟ اضغط هنا

Materials genes of heterogeneous catalysis from clean experiments and artificial intelligence

67   0   0.0 ( 0 )
 نشر من قبل Luca Ghiringhelli
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Heterogeneous catalysis is an example of a complex materials function, governed by an intricate interplay of several processes, e.g., the different surface chemical reactions, and the dynamic re-structuring of the catalyst material at reaction conditions. Modelling the full catalytic progression via first-principles statistical mechanics is impractical, if not impossible. Instead, we show here how a tailored artificial-intelligence approach can be applied, even to a small number of materials, to model catalysis and determine the key descriptive parameters (materials genes) reflecting the processes that trigger, facilitate, or hinder catalyst performance. We start from a consistent experimental set of clean data, containing nine vanadium-based oxidation catalysts. These materials were synthesized, fully characterized, and tested according to standardized protocols. By applying the symbolic-regression SISSO approach, we identify correlations between the few most relevant materials properties and their reactivity. This approach highlights the underlying physicochemical processes, and accelerates catalyst design.



قيم البحث

اقرأ أيضاً

Materials informatics has emerged as a promisingly new paradigm for accelerating materials discovery and design. It exploits the intelligent power of machine learning methods in massive materials data from experiments or simulations to seek for new m aterials, functionality, principles, etc. Developing specialized facility to generate, collect, manage, learn and mine large-scale materials data is crucial to materials informatics. We herein developed an artificial-intelligence-aided data-driven infrastructure named Jilin Artificial-intelligence aided Materials-design Integrated Package (JAMIP), which is an open-source Python framework to meet the research requirements of computational materials informatics. It is integrated by materials production factory, high-throughput first-principles calculations engine, automatic tasks submission and monitoring progress, data extraction, management and storage system, and artificial intelligence machine learning based data mining functions. We have integrated specific features such as inorganic crystal structure prototype database to facilitate high-throughput calculations and essential modules associated with machine learning studies of functional materials. We demonstrated how our developed code is useful in exploring materials informatics of optoelectronic semiconductors by taking halide perovskites as typical case. By obeying the principles of automation, extensibility, reliability and intelligence, the JAMIP code is a promisingly powerful tool contributing to the fast-growing field of computational materials informatics.
Carbon has three hybridization forms of sp-, sp2- and sp3-, and the combination of different forms can obtain different kinds of carbon allotropes, such as diamond, carbon nanotubes, fullerene, graphynes (GYs) and graphdiyne (GDY). Among them, the GD Y molecule is a single-layer two-dimensional (2D) planar structure material with highly -conjugation formed by sp- and sp2- hybridization. GDY has a carbon atom ring composed of benzene ring and acetylene, which makes GDY have a uniformly distributed pore structure. In addition, GDY planar material have some slight wrinkles, which makes GDY have better self-stability than other 2D planar materials. The excellent properties of GDY make it attract the attention of researcher. Therefore, GDY is widely used in chemical catalysis, electronics, communications, clean energy and composite materials. This paper summarizes the recent progress of GDY research, including structure, preparation, properties and application of GDY in the field of catalysts.
The elastic properties of materials derive from their electronic and atomic nature. However, simulating bulk materials fully at these scales is not feasible, so that typically homogenized continuum descriptions are used instead. A seamless and lossle ss transition of the constitutive description of the elastic response of materials between these two scales has been so far elusive. Here we show how this problem can be overcome by using Artificial Intelligence (AI). A Convolutional Neural Network (CNN) model is trained, by taking the structure image of a nanoporous material as input and the corresponding elasticity tensor, calculated from Molecular Statics (MS), as output. Trained with the atomistic data, the CNN model captures the size- and pore-dependency of the materials elastic properties which, on the physics side, can stem from surfaces and non-local effects. Such effects are often ignored in upscaling from atomistic to classical continuum theory. To demonstrate the accuracy and the efficiency of the trained CNN model, a Finite Element Method (FEM) based result of an elastically deformed nanoporous beam equipped with the CNN as constitutive law is compared with that by a full atomistic simulation. The good agreement between the atomistic simulations and the FEM-AI combination for a system with size and surface effects establishes a new lossless scale bridging approach to such problems. The trained CNN model deviates from the atomistic result by 9.6% for porosity scenarios of up to 90% but it is about 230 times faster than the MS calculation and does not require to change simulation methods between different scales. The efficiency of the CNN evaluation together with the preservation of important atomistic effects makes the trained model an effective atomistically-informed constitutive model for macroscopic simulations of nanoporous materials and solving of inverse problems.
Single-atom metal alloy catalysts (SAACs) have recently become a very active new frontier in catalysis research. The simultaneous optimization of both facile dissociation of reactants and a balanced strength of intermediates binding make them highly efficient and selective for many industrially important reactions. However, discovery of new SAACs is hindered by the lack of fast yet reliable prediction of the catalytic properties of the sheer number of candidate materials. In this work, we address this problem by applying a compressed-sensing data-analytics approach parameterized with density-functional inputs. Our approach is faster and more accurate than the current state-of-the-art linear relationships. Besides consistently predicting high efficiency of the experimentally studied Pd/Cu, Pt/Cu, Pd/Ag, Pt/Au, Pd/Au, Pt/Ni, Au/Ru, and Ni/Zn SAACs (the first metal is the dispersed component), we identify more than two hundred yet unreported candidates. Some of these new candidates are predicted to exhibit even higher stability and efficiency than the reported ones. Our study demonstrates the importance of breaking linear relationships to avoid bias in catalysis design, as well as provides a recipe for selecting best candidate materials from hundreds of thousands of transition-metal SAACs for various applications.
This article reviews the Once learning mechanism that was proposed 23 years ago and the subsequent successes of One-shot learning in image classification and You Only Look Once - YOLO in objective detection. Analyzing the current development of Artif icial Intelligence (AI), the proposal is that AI should be clearly divided into the following categories: Artificial Human Intelligence (AHI), Artificial Machine Intelligence (AMI), and Artificial Biological Intelligence (ABI), which will also be the main directions of theory and application development for AI. As a watershed for the branches of AI, some classification standards and methods are discussed: 1) Human-oriented, machine-oriented, and biological-oriented AI R&D; 2) Information input processed by Dimensionality-up or Dimensionality-reduction; 3) The use of one/few or large samples for knowledge learning.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا