ترغب بنشر مسار تعليمي؟ اضغط هنا

An equivalence framework for an age-structured multi-stage representation of the cell cycle

123   0   0.0 ( 0 )
 نشر من قبل Joshua Young
 تاريخ النشر 2021
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop theoretical equivalences between stochastic and deterministic models for populations of individual cells stratified by age. Specifically, we develop a hierarchical system of equations describing the full dynamics of an age-structured multi-stage Markov process for approximating cell cycle time distributions. We further demonstrate that the resulting mean behaviour is equivalent, over large timescales, to the classical McKendrick-von Foerster integro-partial differential equation. We conclude by extending this framework to a spatial context, facilitating the modelling of travelling wave phenomena and cell-mediated pattern formation. More generally, this methodology may be extended to myriad reaction-diffusion processes for which the age of individuals is relevant to the dynamics.



قيم البحث

اقرأ أيضاً

113 - A.O. Sousa 2004
A square lattice is introduced into the Penna model for biological aging in order to study the evolution of diploid sexual populations under certain conditions when one single locus in the individuals genome is considered as identifier of species. Th e simulation results show, after several generations, the flourishing and coexistence of two separate species in the same environment, i.e., one original species splits up into two on the same territory (sympatric speciation). As well, the mortalities obtained are in a good agreement with the Gompertz law of exponential increase of mortality with age.
The outbreak of the novel coronavirus, COVID-19, has been declared a pandemic by the WHO. The structures of social contact critically determine the spread of the infection and, in the absence of vaccines, the control of these structures through large -scale social distancing measures appears to be the most effective means of mitigation. Here we use an age-structured SIR model with social contact matrices obtained from surveys and Bayesian imputation to study the progress of the COVID-19 epidemic in India. The basic reproductive ratio R0 and its time-dependent generalization are computed based on case data, age distribution and social contact structure. The impact of social distancing measures - workplace non-attendance, school closure, lockdown - and their efficacy with durations are then investigated. A three-week lockdown is found insufficient to prevent a resurgence and, instead, protocols of sustained lockdown with periodic relaxation are suggested. Forecasts are provided for the reduction in age-structured morbidity and mortality as a result of these measures. Our study underlines the importance of age and social contact structures in assessing the country-specific impact of mitigatory social distancing.
215 - Mingtao Xia , Tom Chou 2021
We derive the full kinetic equations describing the evolution of the probability density distribution for a structured population such as cells distributed according to their ages and sizes. The kinetic equations for such a sizer-timer model incorpor ates both demographic and individual cell growth rate stochasticities. Averages taken over the densities obeying the kinetic equations can be used to generate a second order PDE that incorporates the growth rate stochasticity. On the other hand, marginalizing over the densities yields a modified birth-death process that shows how age and size influence demographic stochasticity. Our kinetic framework is thus a more complete model that subsumes both the deterministic PDE and birth-death master equation representations for structured populations.
We assess the impact of cell cycle noise on gene circuit dynamics. For bistable genetic switches and excitable circuits, we find that transitions between metastable states most likely occur just after cell division and that this concentration effect intensifies in the presence of transcriptional delay. We explain this concentration effect with a 3-states stochastic model. For genetic oscillators, we quantify the temporal correlations between daughter cells induced by cell division. Temporal correlations must be captured properly in order to accurately quantify noise sources within gene networks.
A Belief Propagation approach has been recently proposed for the zero-patient problem in a SIR epidemics. The zero-patient problem consists in finding the initial source of an epidemic outbreak given observations at a later time. In this work, we stu dy a harder but related inference problem, in which observations are noisy and there is confusion between observed states. In addition to studying the zero-patient problem, we also tackle the problem of completing and correcting the observations possibly finding undiscovered infected individuals and false test results. Moreover, we devise a set of equations, based on the variational expression of the Bethe free energy, to find the zero patient along with maximum-likelihood epidemic parameters. We show, by means of simulated epidemics, how this method is able to infer details on the past history of an epidemic outbreak based solely on the topology of the contact network and a single snapshot of partial and noisy observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا