ترغب بنشر مسار تعليمي؟ اضغط هنا

How Do We Move: Modeling Human Movement with System Dynamics

86   0   0.0 ( 0 )
 نشر من قبل Hua Wei
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Modeling how human moves in the space is useful for policy-making in transportation, public safety, and public health. Human movements can be viewed as a dynamic process that human transits between states (eg, locations) over time. In the human world where intelligent agents like humans or vehicles with human drivers play an important role, the states of agents mostly describe human activities, and the state transition is influenced by both the human decisions and physical constraints from the real-world system (eg, agents need to spend time to move over a certain distance). Therefore, the modeling of state transition should include the modeling of the agents decision process and the physical system dynamics. In this paper, we propose ours to model state transition in human movement from a novel perspective, by learning the decision model and integrating the system dynamics. ours learns the human movement with Generative Adversarial Imitation Learning and integrates the stochastic constraints from system dynamics in the learning process. To the best of our knowledge, we are the first to learn to model the state transition of moving agents with system dynamics. In extensive experiments on real-world datasets, we demonstrate that the proposed method can generate trajectories similar to real-world ones, and outperform the state-of-the-art methods in predicting the next location and generating long-term future trajectories.



قيم البحث

اقرأ أيضاً

An epistemic model for decentralized discrete-event systems with non-binary control is presented. This framework combines existing work on conditional control decisions with existing work on formal reasoning about knowledge in discrete-event systems. The novelty in the model presented is that the necessary and sufficient conditions for problem solvability encapsulate the actions that supervisors must take. This direct coupling between knowledge and action -- in a formalism that mimics natural language -- makes it easier, when the problem conditions fail, to determine how the problem requirements should be revised.
A key step towards understanding human behavior is the prediction of 3D human motion. Successful solutions have many applications in human tracking, HCI, and graphics. Most previous work focuses on predicting a time series of future 3D joint location s given a sequence 3D joints from the past. This Euclidean formulation generally works better than predicting pose in terms of joint rotations. Body joint locations, however, do not fully constrain 3D human pose, leaving degrees of freedom undefined, making it hard to animate a realistic human from only the joints. Note that the 3D joints can be viewed as a sparse point cloud. Thus the problem of human motion prediction can be seen as point cloud prediction. With this observation, we instead predict a sparse set of locations on the body surface that correspond to motion capture markers. Given such markers, we fit a parametric body model to recover the 3D shape and pose of the person. These sparse surface markers also carry detailed information about human movement that is not present in the joints, increasing the naturalness of the predicted motions. Using the AMASS dataset, we train MOJO, which is a novel variational autoencoder that generates motions from latent frequencies. MOJO preserves the full temporal resolution of the input motion, and sampling from the latent frequencies explicitly introduces high-frequency components into the generated motion. We note that motion prediction methods accumulate errors over time, resulting in joints or markers that diverge from true human bodies. To address this, we fit SMPL-X to the predictions at each time step, projecting the solution back onto the space of valid bodies. These valid markers are then propagated in time. Experiments show that our method produces state-of-the-art results and realistic 3D body animations. The code for research purposes is at https://yz-cnsdqz.github.io/MOJO/MOJO.html
With the increase of research in self-adaptive systems, there is a need to better understand the way research contributions are evaluated. Such insights will support researchers to better compare new findings when developing new knowledge for the com munity. However, so far there is no clear overview of how evaluations are performed in self-adaptive systems. To address this gap, we conduct a mapping study. The study focuses on experimental evaluations published in the last decade at the prime venue of research in software engineering for self-adaptive systems -- the International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS). Results point out that specifics of self-adaptive systems require special attention in the experimental process, including the distinction of the managing system (i.e., the target of evaluation) and the managed system, the presence of uncertainties that affect the system behavior and hence need to be taken into account in data analysis, and the potential of managed systems to be reused across experiments, beyond replications. To conclude, we offer a set of suggestions derived from our study that can be used as input to enhance future experiments in self-adaptive systems.
Recent years have seen a boom in interest in machine learning systems that can provide a human-understandable rationale for their predictions or decisions. However, exactly what kinds of explanation are truly human-interpretable remains poorly unders tood. This work advances our understanding of what makes explanations interpretable in the specific context of verification. Suppose we have a machine learning system that predicts X, and we provide rationale for this prediction X. Given an input, an explanation, and an output, is the output consistent with the input and the supposed rationale? Via a series of user-studies, we identify what kinds of increases in complexity have the greatest effect on the time it takes for humans to verify the rationale, and which seem relatively insensitive.
Graph games of infinite length are a natural model for open reactive processes: one player represents the controller, trying to ensure a given specification, and the other represents a hostile environment. The evolution of the system depends on the d ecisions of both players, supplemented by chance. In this work, we focus on the notion of randomised strategy. More specifically, we show that three natural definitions may lead to very different results: in the most general cases, an almost-surely winning situation may become almost-surely losing if the player is only allowed to use a weaker notion of strategy. In more reasonable settings, translations exist, but they require infinite memory, even in simple cases. Finally, some traditional problems becomes undecidable for the strongest type of strategies.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا