ﻻ يوجد ملخص باللغة العربية
The Sinc quadrature and the Sinc indefinite integration are approximation formulas for definite integration and indefinite integration, respectively, which can be applied on any interval by using an appropriate variable transformation. Their convergence rates have been analyzed for typical cases including finite, semi-infinite, and infinite intervals. In addition, for verified automatic integration, more explicit error bounds that are computable have been recently given on a finite interval. In this paper, such explicit error bounds are given in the remaining cases on semi-infinite and infinite intervals.
The Sinc approximation is a function approximation formula that attains exponential convergence for rapidly decaying functions defined on the whole real axis. Even for other functions, the Sinc approximation works accurately when combined with a prop
This paper reinforces numerical iterated integration developed by Muhammad--Mori in the following two points: 1) the approximation formula is modified so that it can achieve a better convergence rate in more general cases, and 2) explicit error bound
The Sinc approximation has shown high efficiency for numerical methods in many fields. Conformal maps play an important role in the success, i.e., appropriate conformal map must be employed to elicit high performance of the Sinc approximation. Approp
A Sinc-collocation method has been proposed by Stenger, and he also gave theoretical analysis of the method in the case of a `scalar equation. This paper extends the theoretical results to the case of a `system of equations. Furthermore, this paper p
We introduce a new sinc-type molecular beam epitaxy model which is derived from a cosine-type energy functional. The landscape of the new functional is remarkably similar to the classical MBE model with double well potential but has the additional ad