ﻻ يوجد ملخص باللغة العربية
We show that Cooper pairing can occur intrinsically away from the Fermi surface in $j=3/2$ superconductors with strong spin-orbit coupling and equally curved bands in the normal state. In contrast to conventional pairing between spin-$1/2$ electrons, we derive that pairing can happen between inter-band electrons having different total angular momenta, i.e., $j=1/2$ with $j=3/2$ electrons. Such superconducting correlations manifest themselves by a pair of indirect gap-like structures at finite excitation energies. An observable signature of this exotic pairing is the emergence of a pair of symmetric superconducting coherence peaks in the density of states at finite energies. We argue that finite-energy pairing is a generic feature of high-spin superconductors, both in presence and absence of inversion symmetry.
Recent experiments have revealed the evidence of nodal-line superconductivity in half-Heusler superconductors, e.g. YPtBi. Theories have suggested the topological nature of such nodal-line superconductivity and proposed the existence of surface Major
High temperature superconducting materials have been known since the pioneering work of Bednorz and Mueller in 1986. While the microscopic mechanism responsible for high Tc superconductivity is still debated, most materials showing high Tc contain hi
We study the time evolution of a system of fermions with pairing interactions at a finite temperature. The dynamics is triggered by an abrupt increase of the BCS coupling constant. We show that if initially the fermions are in a normal phase, the amp
Superconductivity arises from two distinct quantum phenomena: electron pairing and long-range phase coherence. In conventional superconductors, the two quantum phenomena generally take place simultaneously, while the electron pairing occurs at higher
In many unconventional superconductors, the presence of a pseudogap - a suppression in the electronic density of states extending above the critical temperature - has been a long-standing mystery. Here, we employ combined textit{in situ} electrical t