ترغب بنشر مسار تعليمي؟ اضغط هنا

Preformed Cooper pairs in layered FeSe-based superconductors

112   0   0.0 ( 0 )
 نشر من قبل Tao Wu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superconductivity arises from two distinct quantum phenomena: electron pairing and long-range phase coherence. In conventional superconductors, the two quantum phenomena generally take place simultaneously, while the electron pairing occurs at higher temperature than the long-range phase coherence in the underdoped high-Tc cuprate superconductors. Recently, whether electron pairing is also prior to long-range phase coherence in single-layer FeSe film on SrTiO3 substrate is under debate. Here, by measuring Knight shift and nuclear spin-lattice relaxation rate, we unambiguously reveal a pseudogap behavior below Tp ~ 60 K in two layered FeSe-based superconductors with quasi-two-dimension. In the pseudogap regime, a weak diamagnetic signal and a remarkable Nernst effect are also observed, which indicate that the observed pseudogap behavior is related to superconducting fluctuations. These works confirm that strong phase fluctuation is an important character in the two-dimensional iron-based superconductors as widely observed in high-Tc cuprate superconductors.

قيم البحث

اقرأ أيضاً

In most superconductors the transition to the superconducting state is driven by the binding of electrons into Cooper-pairs. The condensation of these pairs into a single, phase coherent, quantum state takes place concomitantly with their formation a t the transition temperature, $T_c$. A different scenario occurs in some disordered, amorphous, superconductors: Instead of a pairing-driven transition, incoherent Cooper pairs first pre-form above $T_c$, causing the opening of a pseudogap, and then, at $T_c$, condense into the phase coherent superconducting state. Such a two-step scenario implies the existence of a new energy scale, $Delta_{c}$, driving the collective superconducting transition of the preformed pairs. Here we unveil this energy scale by means of Andreev spectroscopy in superconducting thin films of amorphous indium oxide. We observe two Andreev conductance peaks at $pm Delta_{c}$ that develop only below $T_c$ and for highly disordered films on the verge of the transition to insulator. Our findings demonstrate that amorphous superconducting films provide prototypical disordered quantum systems to explore the collective superfluid transition of preformed Cooper-pairs pairs.
We study conditions for the emergence of the preformed Cooper pairs in materials hosting flat bands. As a particular example, we consider time-reversal symmetric pseudospin-1 semimetal, with a pair of three-band crossing points at which a flat band i ntersects with a Dirac cone, and focus on the s-wave inter-node pairing channel. The nearly dispersionless nature of the flat band promotes local Cooper pair formation so that the system can be considered as an array of superconducting grains. Due to dispersive bands, Andreev scattering between the grains gives rise to the global phase-coherent superconductivity at low temperatures. We develop a theory to calculate transition temperature between the preformed Cooper pair state and the phase-coherent state for different interaction strengths in the Cooper channel.
A general feature of unconventional superconductors is the existence of a superconducting dome in the phase diagram as a function of carrier concentration. For the simplest iron-based superconductor FeSe (with transition temperature Tc ~ 8 K), its Tc can be greatly enhanced by doping electrons via many routes, even up to 65 K in monolayer FeSe/SiTiO3. However, a clear phase diagram with carrier concentration for FeSe-derived superconductors is still lacking. Here, we report the observation of a series of discrete superconducting phases in FeSe thin flakes by continuously tuning carrier concentration through the intercalation of Li and Na ions with a solid ionic gating technique. Such discrete superconducting phases are robust against the substitution of Se by 20% S, but are vulnerable to the substitution of Fe by 2% Cu, highlighting the importance of the iron site being intact. A complete superconducting phase diagram for FeSe-derivatives is given, which is distinct from other unconventional superconductors.
In many unconventional superconductors, the presence of a pseudogap - a suppression in the electronic density of states extending above the critical temperature - has been a long-standing mystery. Here, we employ combined textit{in situ} electrical t ransport and angle-resolved photoemission spectroscopy (ARPES) measurements to reveal an unprecedentedly large pseudogap regime in single-layer FeSe/SrTiO$_3$, an interfacial superconductor where incoherent Cooper pairs are initially formed above $T_{Delta}$ $approx$ 60 K, but where a zero resistance state is only achieved below $T_{0}$ $<$ 30 K. We show that this behavior is accompanied by distinct transport signatures of two-dimensional phase fluctuating superconductivity, suggesting a mixed vortex state hosting incoherent Cooper pairs which persist well above the maximum clean limit $T_{c}$ of $approx$ 40 K. Our work establishes the critical role of reduced dimensionality in driving the complex interplay between Cooper pairing and phase coherence in two-dimensional high-$T_c$ superconductors, providing a paradigm for understanding and engineering higher-$T_{c}$ interfacial superconductors.
High-temperature superconductivity and a wide variety of exotic superconducting states discovered in FeSe-based materials have been at the frontier of research on condensed matter physics over the past decade. Unique properties originating from the m ultiband electronic structure, strongly orbital-dependent phenomena, extremely small Fermi energy, electronic nematicity, and topological aspects give rise to many distinct and fascinating superconducting states. Here, we provide an overview of our current understanding of the superconductivity of {it bulk} FeSe-based materials, focusing on FeSe and the isovalent substituted FeSe$_{1-x}$S$_{x}$ and FeSe$_{1-x}$Te$_{x}$. We discuss the highly nontrivial superconducting properties in FeSe, including extremely anisotropic pairing states, crossover phenomena from Bardeen--Cooper--Schrieffer (BCS) to Bose--Einstein condensation (BEC) states, a novel field-induced superconducting phase, and broken time-reversal symmetry. We also discuss the evolution of the superconducting gap function with sulfur and tellurium doping, paying particular attention to the impact of quantum critical nematic fluctuations and the topological superconductivity. FeSe-based materials provide an excellent playground to study various exotic superconducting states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا